Abstract:
A steelmaking process is disclosed. The process includes producing molten steel and molten steelmaking slag in a steelmaking process, the steelmaking slag including iron units and flux units, and thereafter producing molten iron in a molten bath based direct smelting process using a substantial portion of the steelmaking slag as part of the feed material requirements for the direct smelting process. A direct smelting process is also disclosed. The process includes pre-treating ferrous material including steelmaking slag and thereafter direct smelting molten iron using the pretreated ferrous material as part of the feed material for the process.
Abstract:
Method of building a direct smelting plant comprising a metal smelting vessel (11) and ancillary plant components such as the components of a hot air supply station (24), an offgas treatment station (32), a solids feed station (41), a hot metal desulphurization station (47) and hot metal and slag launders extending from the smelting vessel (11). The ring track (53) of a ringer crane (51) is installed in front of location at which vessel (11) is to be installed. Crane boom (54) is laid out along elongate stretch of the building site which becomes a corridor (60) between major ancillary components when plant is fully erected. Boom (54) is connected to crane carriage (52) and hoisted to provide high lift capacity over a ground area embracing proposed site of vessel (11) and ancillary components. Prefabricated components are then lifted by crane (51) into appropriate position for final installation. After installation is completed boom (54) is laid down along corridor (60) and crane (51) is dismantled and removed, leaving corridor (60) as an access laneway.
Abstract:
A method and an assembly for treating minerals using microwave energy are disclosed. The method includes exposing a moving bed, preferably a mixed moving bed, of mineral particles to pulsed high energy microwave energy so that at least substantially all particles receive at least some exposure to microwave energy.
Abstract:
A smelting apparatus includes a vessel and a solids injection lance extending through an opening in the wall of a vessel barrel into the interior space of the vessel. The lance includes a central core tube through which to pass solid particulate material into the vessel and an annular cooling jacket surrounding the central core tube throughout a substantial part of its length. The lance has a mounting structure including a tubular part extended about the cooling jacket and about twice the diameter of the cooling jacket. The tubular part fits within a tubular lance mounting bracket welded to the shell of the vessel barrel to extend outwardly from the vessel. The lance is held within the mounting bracket by clamping bolts acting between flanges on the tubular part and the tubular bracket.
Abstract:
A process for recovering copper from chalcopyrite is disclosed. The process includes oxidising sulphur in chalcopyrite with a solution under predetermined contact conditions and thereby releasing at least part of the copper in the chalcopyrite into the solution as copper ions. The process includes a subsequent step of reducing sulphur in a solid product from step (a) to a minus two, ie. sulphide, valence state with a solution under predetermined contact conditions. The process further includes a subsequent step of oxidising sulphur in a solid product from step (b) with a solution under predetermined contact conditions and thereby releasing at least part of the remaining copper in the solid product into the solution as copper ions. The process further includes recovering copper from one or more of the solutions from steps (a) and (c).
Abstract:
A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured. The first mount section (10) has cut-outs (16) and the second mount section (20) has lugs (13) which pass through the cut-outs for connecting the first and second mount sections (10 and 20) in a Dewar (1).
Abstract:
A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured. The sensor masses not only serve to provide measurements of the gravity gradient tensor but also provide signals indicative of angular movement of the mounting and therefore form one of a plurality of angular accelerometers for detecting angular movement so that control signals can be generated to stabilise the mounting (5).
Abstract:
The present invention provides a gravity gradiometer which comprises at least one sensor mass suspended by a coupling which enables movement of the at least one sensor mass about an axis in response to a gravity gradient. Further, the gravity gradiometer comprises at least one transducer for generating an electrical signal in response to the movement of the at least one sensor mass relative to a component of the transducer and for influencing the movement of the at least one sensor mass. The gravity gradiometer also comprises electrical circuitry for receiving the electrical signal from the at least one transducer and for directing an actuating signal to the at least one transducer so that in use the at least one transducer functions as sensor and actuator.
Abstract:
A process for producing desulphurised iron in a solid form is disclosed. The process includes the steps of (a) direct smelting an iron-containing metalliferous feed material and producing molten iron; (b) desulphurising molten iron produced in direct smelting step (a); and (c) casting desulphurised molten iron from desulphurisation step (b) into a solid form, such as pigs.