Abstract:
The present invention provides a flame-retardant resin composition having excellent flame retardancy, in which generation of a corrosive gas during combustion is suppressed.The flame-retardant resin composition of the present invention, comprising the below-described component (A) or both of components (A) and (B) as a flame retardant component(s) in a halogen-free thermoplastic resin, wherein the ratio of the components (A) and (B) is 100:0 to 60:40 in terms of mass ratio; the electric conductivity of a gas generated during combustion, which is measured in accordance with IEC 60754-2, is not higher than 10.0 μS/mm; and the flame retardancy rating measured in accordance with the UL94VTM standard is VTM-2 or higher.Component (A): a (poly)phosphate compound represented by the following Formula (1): Component (B): a (poly)phosphate compound represented by the following Formula (2): (wherein, X1 represents ammonia or a triazine derivative represented by the following Formula (3))
Abstract:
Disclosed are a composition for forming a zinc oxide-based film, said composition containing, as an essential component, a zinc compound represented by the following formula (1): wherein R1 and R2 mutually independently represent an alkyl group having 1 to 4 carbon atoms, a process for producing the zinc oxide-based film, and the zinc compound. The composition makes it possible to form a high-quality zinc oxide-based film, which has transparency, homogeneity and electrical conductivity, at a low temperature of 300° C. or lower.
Abstract:
The present invention provides a ruthenium compound represented by the following general formula (1) or (2), a thin-film forming raw material containing the ruthenium compound, and a method of producing a thin-film including using the thin-film forming raw material: where R1 to R12 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorine atom-containing group, and “n” represents an integer from 0 to 2, provided that at least one of R1 to R12 represents the fluorine atom-containing group; where R13 to R17 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a total number of the carbon atoms of R13 to R17 is 3 or more.
Abstract:
Provided is a composite material that has improved dispersibility of an exfoliated layered substance in a resin or the like and can thus significantly improve the properties, such as impact resistance, of a synthetic resin. A composite material in which the surface of an exfoliated layered substance is coated with a compound having a reactive group, wherein the compound having a reactive group is a compound having at least one reactive group selected from the group consisting of an epoxy group, an oxetanyl group, an isocyanate group, an acrylic group, a methacrylic group, a vinyl ether group, a vinyl ester group, and a hydrolyzable silyl group, and the compound having a reactive group is contained in an amount of 0.1 to 100 parts by mass, with respect to 100 parts by mass of the exfoliated layered substance.
Abstract:
The invention provides compounds represented by the formula (1) wherein X and Y are oxygen atoms or sulfur atoms, Z is a hydroxyl group or the like, R1 and R2 are alkyl groups and the like, R4 and R5 are alkyl groups and the like, R3 and R6 are hydrogen atoms and the like, R7 is a substituted phenyl group or the like, and Q is an aryl group or the like, or salts thereof, pest control agents containing the compounds as active ingredients, and methods for use thereof.
Abstract:
Provided is a thin-film forming raw material, which is used in an atomic layer deposition method, including a ruthenium compound represented by the following general formula (1): wherein R1 represents a hydrogen atom or a methyl group, and R2 and R3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
Abstract:
A thin-film forming raw material contains a molybdenum compound represented by the following general formula (1), a method of forming a thin-film through use of the thin-film forming raw material, and a molybdenum compound having a specific structure: where R1 represents an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms, L1 represents a group represented by the following general formula (L-1) or (L-2), and “n” represents an integer of from 1 to 4, provided that when “n” represents 4, R1 represents a fluorine atom-containing alkyl group having 1 to 5 carbon atoms; where R2 to R12 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms, and * represents a bonding site.
Abstract:
Provided is a reactive material, including a compound represented by the following general formula (1) or (2).
In the formula (1), R1, R2, R3, and R4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or an electron-withdrawing group, provided that at least one of R1, R2, R3, or R4 represents the electron-withdrawing group.
In the formula (2), R5 and R6 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or an electron-withdrawing group, provided that at least one of R5 or R6 represents the electron-withdrawing group.
Abstract:
Provided are: a polyolefin resin composition that is unlikely to be affected by an NOx gas; and a molded article using the same. The polyolefin resin composition includes, with respect to 100 parts by mass of a polyolefin resin (A): 0.001 to 5 parts by mass of a hindered amine compound (B) which has a nitrogen content of less than 4.0% by mass and a molecular weight of 500 or less; and 0.001 to 5 parts by mass of a phenolic antioxidant (C). The hindered amine compound (B) which has a nitrogen content of less than 4.0% by mass and a molecular weight of 500 or less preferably contains a compound represented by the following Formula (1), where R1 represents a hydrogen atom or a methyl group; and R2 represents a linear or branched alkyl group having 1 to 22 carbon atoms:
Abstract:
Provided is a thin-film forming raw material, including an alkoxide compound represented by the following general formula (1):
where R1 to R4 each independently represent an alkyl group having 1 to 5 carbon atoms, M represents a rare earth metal atom, and “n” represents a valence of the rare earth metal atom.