Abstract:
A semiconductor device is disclosed which includes a silicide substrate, a nitride layer, two STIs, and a strain nitride. The silicide substrate has two doping areas. The nitride layer is deposited on the silicide substrate. The silicide substrate and the nitride layer have a recess running through. The two doping areas are at two sides of the recess. The end of the recess has an etching space bigger than the recess. The top of the silicide substrate has a fin-shaped structure. The two STIs are at the two opposite sides of the silicide substrate (recess). The strain nitride is spacer-formed in the recess and attached to the side wall of the silicide substrate, nitride layer, two STIs. The two doping areas cover the strain nitride. As a result, the efficiency of semiconductor is improved, and the drive current is increased.
Abstract:
In a manufacturing method of a non-volatile memory, a substrate is provided, and strip-shaped isolation structures are formed in the substrate. A first memory array including memory cell columns is formed on the substrate. Each memory cell column includes memory cells connected in series with one another, a source/drain region disposed in the substrate outside the memory cells, select transistors disposed between the source/drain region and the memory cells, control gate lines extending across the memory cell columns and in a second direction, and first select gate lines respectively connecting the select transistors in the second direction in series. First contacts are formed on the substrate at a side of the first memory array and arranged along the second direction. Each first contact connects the source/drain regions in every two adjacent active regions.
Abstract:
A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.
Abstract:
A manufacturing method for double-side capacitor of stack DRAM has steps of: forming a sacrificial structure in the isolating trench and the capacitor trenches; forming a first covering layer and a second covering layer on the sacrificial structure; modifying a part of the second covering layer; removing the un-modified second covering layer and the first covering layer to expose the sacrificial structure; removing the exposed part of the sacrificial structure to expose the electrode layer; removing the exposed electrode layer to expose the oxide layer; and removing the oxide layer and sacrificial structure to form the double-side capacitors.
Abstract:
The invention provides a dynamic random access memory (DRAM) with an electrostatic discharge (ESD) region. The upper portion of the ESD plug is metal, and the lower portion of the ESD plug is polysilicon. This structure may improve the mechanical strength of the ESD region and enhance thermal conductivity from electrostatic discharging. In addition, the contact area between the ESD plugs and the substrate can be reduced without increasing aspect ratio of the ESD plugs. The described structure is completed by a low critical dimension controlled patterned photoresist, such that the processes and equipments are substantially maintained without changing by a wide margin.
Abstract:
A method of forming a semiconductor structure is provided. The method includes providing a substrate and forming a mask layer on the substrate, Next, dielectric isolations are formed in the mask layer and the substrate, wherein the dielectric isolations extend above the substrate. Then, the mask layer is removed to expose a portion of the substrate, and a dielectric layer is formed on the exposed portion of the substrate. Subsequently, a first conductive layer is formed on the dielectric layer, and a portion of the dielectric isolation is removed, wherein a top surface of the remaining dielectric isolation is lower than a top surface of the first conductive layer. Moreover, a conformal layer is formed over the substrate, and a second conductive layer is formed on the conformal layer.
Abstract:
A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
Abstract:
The memory cell of the present invention has two independent storage regions embedded into two opposite sidewalls of the control gate respectively. In this way, the data storage can be more reliable. Other features of the present invention are that the thickness of the dielectric layers is different, and the two independent storage regions are formed on opposite bottom sides of the opening by the etching process and form a shape like a spacer. The advantage of the aforementioned method is that the fabricating process is simplified and the difficulty of self-alignment is reduced.
Abstract:
A manufacturing method of a non-volatile memory includes forming a first dielectric layer, a first conductive layer, and a first cap layer sequentially on a substrate to form first gate structures; conformally forming a second dielectric layer on the substrate; forming a first spacer having a larger wet etching rate than the second dielectric layer on each sidewall of each first gate structure; partially removing the first and second dielectric layers to expose the substrate. A third dielectric layer is formed on the substrate between the first gate structures; removing the first spacer; forming a second conductive layer on the third dielectric layer; removing the first cap layer and a portion of the first conductive layer to form second gate structures; and forming doped regions in the substrate at two sides of each second gate structure.
Abstract:
A flash memory cell includes a substrate, a T-shaped control gate disposed above the substrate, a floating gate embedded in a lower recess of the T-shaped control gate, a dielectric layer between the T-shaped control gate and the floating gate; a cap layer above the T-shaped control gate, a control gate oxide between the T-shaped control gate and the substrate, a floating gate oxide between the floating gate and the substrate, a liner covering the cap layer and the floating gate, and a source/drain region adjacent to the floating gate. The floating gate has a vertical wall surface that is coplanar with one side of the dielectric layer.