Abstract:
An array substrate device having a color filter-on-thin film transistor (COT) structure for a liquid crystal display device includes a gate line formed on a substrate along a transverse direction, the gate line including a gate pad at one end thereof, a first insulating layer formed on the substrate to cover the gate line, the first insulating layer exposing a first portion of the gate pad, a data line formed over the first insulating layer along a longitudinal direction on the substrate, the data line defining a pixel region with the gate line and including a data pad at one end thereof, a thin film transistor formed at a crossing region of the gate and data lines, the thin film transistor including a gate electrode, a semiconductor layer, a source electrode, and a drain electrode, a black matrix overlapping the thin film transistor, the gate line, and the data line except a second portion of the drain electrode, a second insulating layer formed over an entire surface of the substrate to cover the black matrix, the second insulating layer exposing the first portion of the gate pad, a third portion of the data pad, and the pixel region, a first pixel electrode within the pixel region and contacting the second exposed portion of the drain electrode, a color filter on the first pixel electrode within the pixel region, and a second pixel electrode on the color filter and contacting the first pixel electrode.
Abstract:
A method of fabricating a liquid crystal display device includes steps of forming a first metal layer on the substrate to form a gate line including a gate electrode, a gate pad, and a first capacitor electrode, forming an insulating layer, an active layer, and a second metal layer on the substrate, patterning the second metal layer to form a data line including a data pad, a source electrode, a drain electrode, and a second capacitor electrode, forming a passivation layer to cover the second metal layer, forming a photoresist on the passivation layer, exposing the photoresist using a mask having a light shielding portion, a light transmissive portion, and a semi-transmissive portion, forming a first photoresist portion, a second photoresist portion, and a third photoresist portion, patterning the passivation layer, the active layer, and the insulating layer, and forming a pixel electrode on the passivation layer.
Abstract:
A dispenser system for a liquid crystal display panel includes at least one table upon which a substrate having a plurality of image display parts is loaded, a plurality of syringes each having a nozzle at one end portion for supplying a dispensing material onto the substrate, and a plurality of robot arms having the plurality of syringes arranged at both sides of the table.
Abstract:
A data-driving apparatus of an electro-luminescence display panel includes a display panel receiving a current signal to display an image, and a data driver having a plurality of current sink data drive parts in order to supply data to the display panel based on a constant current, wherein the current sink data drive part comprises a current sink data drive integrated circuit for supplying the data to the display panel based on the constant current, and a reference current supply/path part for supplying the constant current to the current sink data drive integrated circuit and, at a same time, supplying the same constant current to an adjacent current sink data driver in a cascade circuit configuration.
Abstract:
A method of crystallizing amorphous silicon includes forming an amorphous silicon layer on a substrate, placing a mask over the substrate including the amorphous silicon layer, and applying a laser beam onto the amorphous silicon layer through the mask to form a first crystallized region, the laser beam having an energy intensity high enough to completely melt the amorphous silicon layer, wherein the mask comprises a base substrate, a phase shift layer on the base substrate, having a plurality of first stripes having a first width separated by slits, and a blocking layer overlapping the phase shift layer, having a plurality of second stripes having a second width narrower than the first width, the second stripes being parallel to the first stripes.
Abstract:
A transflective liquid crystal display includes an upper substrate having an upper alignment film, a lower substrate having a reflective part for reflecting a light and a transmissive part where light transmits through the lower substrate, a liquid crystal positioned between the upper substrate and the lower substrate, a reflective part alignment film on the lower substrate corresponding to the reflective part and a transmissive part alignment film on the lower substrate corresponding to the transmissive part.
Abstract:
A method of fabricating a liquid crystal display device includes the steps of forming a gate electrode on a transparent substrate; forming a gate insulating film, an active layer and an ohmic contact layer on the transparent substrate to cover the gate electrode; forming a source electrode and a drain electrode on the ohmic contact layer and patterning the drain electrode to form an L-shaped portion and a plurality of protrusions; forming a protective layer on the source and drain electrodes such that side surfaces of the protective layer, the drain electrode, the ohmic contact layer and the active layer are exposed; and forming a pixel electrode on the protective layer to electrically contact the side surface of the drain electrode.
Abstract:
A liquid crystal display device bonding apparatus includes a chamber part for bonding substrates together, a plurality of moving elements within the chamber part, and at least one origin verifying system provided along moving paths of the moving elements.
Abstract:
A method and apparatus are provided for manufacturing a liquid crystal display device. The method includes the steps of providing at least a first substrate and a second substrate on a single production process line, passing the first and second substrates through a sealing material coating portion of the single production process line in serial order such that a sealing material is coated on the second substrate with the first substrate being passed through the sealing material coating portion without forming a sealing material thereon, passing the first and the second substrates through a liquid crystal dispensing portion of the single production process line in serial order such that liquid crystal is dispensed onto a pixel region of one of the first and second substrates with the other one of the first and second substrates being passed through the liquid crystal dispensing portion without dispensing liquid crystal thereon, and assembling the first substrate with the second substrate to form a liquid crystal panel of at least one liquid crystal display device.
Abstract:
An apparatus and method are provided for deaerating liquid crystal contained in at least one liquid crystal container. The apparatus includes a chamber, a holder, a displacement mechanism, a vacuum system and a gas supply. The chamber has an opening to provide access to an interior of the chamber and a cover to seal the opening. The holder is disposed in the chamber to hold the liquid crystal container having the liquid crystal while the displacement mechanism displaces the at least one container. Here, the vacuum system creates a vacuum state in the chamber during deaeration, and the gas supply restores the chamber to atmospheric pressure.