Abstract:
A semiconductor package with a support structure and a fabrication method thereof are provided. With a chip being electrically connected to electrical contacts formed on a carrier, a molding process is performed. A plurality of recessed portions formed on the carrier are filled with an encapsulant for encapsulating the chip during the molding process. After the carrier is removed, the part of the encapsulant filling the recessed portions forms outwardly protruded portions on a surface of the encapsulant, such that the semiconductor package can be attached to an external device via the protruded portions.
Abstract:
A wafer level semiconductor package with a build-up layer is provided, which includes a glass frame having a through hole for receiving a semiconductor chip therein, a low-modulus buffer material filled within the space formed between the semiconductor chip and the glass frame, a build-up layer formed on the glass frame and the semiconductor chip such that the build-up layer is electrically connected to the semiconductor chip, and a plurality of conductive elements mounted on the build-up layer so that the semiconductor chip is electrically connected to external devices. With the use of the glass frame and low-modulus buffer material, the wafer level semiconductor package thus-obtained is free from warpage, chip-crack, and delamination problems and the reliability thereof is enhanced. A method for fabricating the wafer level semiconductor package is also provided.
Abstract:
A heat-dissipating semiconductor package and a fabrication method thereof are provided. A semiconductor chip is mounted and electrically connected to a substrate. A heat-dissipating structure includes a heat sink and at least one supporting portion, wherein the supporting portion is attached to the substrate at a position outside a predetermined package area for the semiconductor package, and the semiconductor chip is disposed under the heat sink. An encapsulant is formed on the substrate to encapsulate the semiconductor chip and the heat-dissipating structure, wherein a projection area of the encapsulant on the substrate is larger in size than the predetermined package area. A cutting process is performed along edges of the predetermined package area to remove parts of the encapsulant, the supporting portion and the substrate, which are located outside the predetermined package area, so as to form the semiconductor package integrated with the heat-dissipating structure.
Abstract:
A fabrication method of under bump metallurgy (UBM) structure is provided. A blocking layer is applied over a surface of a semiconductor element formed with at least one bond pad and a passivation layer thereon. The passivation layer covers the semiconductor element and exposes the bond pad, and the blocking layer covers the bond pad and the passivation layer. The blocking layer is formed with at least one opening at a position corresponding to the bond pad. Metallic layers are formed on a surface of the blocking layer and at the opening. The metallic layers are patterned to form a UBM structure at the opening corresponding to the bond pad. Then the blocking layer is removed. The blocking layer can separate the metallic layers for forming the UBM structure from the passivation layer to prevent metallic residues of the UBM structure from being left on the passivation layer.
Abstract:
A monitoring method to monitor efficiency of air-blowing devices in a ventilation system. First, an optimal system curve is provided. Then, the air-blowing devices are activated with a first current frequency to obtain a first fan performance curve of the air-blowing devices according to the first current frequency and a test record. Next, first flow rates of the air-blowing devices are detected, and first system curves and efficiencies of the air-blowing devices are obtained by comparing the first flow rates with the first fan performance curve.
Abstract:
A photosensitive semiconductor package and a method for fabricating the same are proposed. The package includes a carrier having a first surface, an opposite second surface, and an opening penetrating the carrier; a photosensitive chip having an active surface and a non-active surface, wherein a plurality of bond pads are formed close to edges of the active surface, and the chip is mounted via corner positions of its active surface to the second surface of the carrier, with the bond pads being exposed via the opening; a plurality of bonding wires formed in the opening, for electrically connecting the bond pads of the chip to the first surface of the carrier; a light-penetrable unit attached to the active surface of the chip and received in the opening; and an encapsulant for encapsulating the bonding wires and peripheral sides of the chip to seal the opening.
Abstract:
A semiconductor package with a heat sink is provided. At least one chip and a heat sink attached to the chip are mounted on a substrate. At least one slot is formed through at least one corner of the heat sink at a position attached to the substrate. An adhesive material is applied between the heat sink and substrate and over filled in the slot with an overflow of the adhesive material out of the slot. The adhesive material over filled in the slot provides an anchoring effect and increases its contact area with the heat sink to thereby firmly secure the heat sink on the substrate. Further, the slot formed at the corner of the heat sink can alleviate thermal stresses accumulated at the corner of the heat sink and thereby prevent delamination between the heat sink and the substrate.
Abstract:
A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; an encapsulant formed on the chip carrier and for encapsulating the chip, with a non-active surface of the chip being exposed from the encapsulant; and a heat spreader having a hollow portion and attached to the encapsulant, wherein the chip is received in the hollow portion and the non-active surface of the chip is completely exposed to the hollow portion, such that heat generated by the chip can be directly dissipated out of the package structure. The present invention also provides a method for fabricating the heat dissipating package structure.
Abstract:
A semiconductor package with a heat sink and a method for fabricating the same are proposed. The heat sink is provided with a rigid and thermally resistant detach member on a top surface thereof, and is attached via its bottom surface to a chip mounted on a chip carrier. The detach member is sized larger than the heat sink and can be easily removed from the top surface of the heat sink. Subsequently, a molding process is performed to form an encapsulant for completely encapsulating the chip, the heat sink and the detach member. Then, a singulation process is performed to cut along predetermined cutting lines located between sides of the heat sink and corresponding sides of the detach member. Finally, the detach member and a portion of the encapsulant formed on the detach member are removed from the heat sink. The above fabrication method reduces the packaging cost.
Abstract:
A thermally enhanced semiconductor package and a fabrication method thereof are provided. A plurality of conductive bumps are formed on bond pads on an active surface of a chip. A heat sink is attached to an inactive surface of the chip and has a surface area larger than that of the chip. An encapsulation body encapsulates the heat sink, chip and conductive bumps, while exposing a bottom or surfaces, not for attaching the chip, of the heat sink and ends of the conductive bumps outside. A plurality of conductive traces are formed on the encapsulation body and electrically connected to the ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with a plurality of openings for exposing predetermined portions of the conductive traces. A solder ball is implanted on each exposed portion of the conductive traces.