Abstract:
In one embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening. A powder mixture is disposed within the opening. A substrate is disposed within the opening adjacent the powder mixture. Paint is coated on a surface within the opening and opposite the powder mixture with respect to the substrate. A meltable sealant is disposed within the opening and opposite the substrate with respect to the surface and a cap is covering the opening.In another embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening, a powder mixture is disposed within the opening, a substrate disposed within the opening adjacent and above the powder mixture, a formable sealant barrier is disposed within the opening above the substrate, a meltable sealant is disposed within the opening above the formable sealant barrier, and a cap covers the opening.
Abstract:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
Abstract:
An improved assembly for HPHT processing having a can with an opening and a mixture disposed within the opening. A sealant barrier is positioned atop the mixture. First and second lids are positioned atop the mixture. A meltable sealant positioned intermediate the second lid and a cap covering the opening
Abstract:
A layer of single crystal CVD diamond of high quality having a thickness greater than 2 mm. Also provided is a method of producing such a CVD diamond layer.
Abstract:
The present invention is directed to a method for changing the color of colored natural diamonds. The method includes placing a discolored natural diamond in a pressure-transmitting medium which is consolidated into a pill. Next, the pill is placed into a high pressure/high temperature (HP/HT) press at elevated pressure and elevated temperature for a time sufficient to improve the color of the diamond. The diamond may be exposed at elevated-pressure and elevated-temperature conditions within the graphite-stable region of the carbon-phase diagram—without significant graphitization of the diamond, or above the diamond-graphite equilibrium and within the diamond-stable region of the carbon-phase diagram. Finally, the diamond is recovered from said press. Colorless Type Ia and Type II diamonds may be made by this method.
Abstract:
A method for reducing blow holes existing in a light alloy cast by using the hot isostatic process (HIP), comprising the steps of heating the light alloy cast at a temperature that is 5-100null C. lower than a temperature at which the liquid phase of the light alloy cast appears, and pressing the heated light alloy cast by a liquid pressure media, thereby reducing the blow holes existing in it.
Abstract:
A dry process for the cleaning of precision surfaces such as of semiconductor wafers, by using process materials such as carbon dioxide and useful additives such as cosolvents and surfactants, where the process materials are applied exclusively in gaseous and supercritical states. Soak and agitation steps are applied to the wafer, including a rapid decompression of the process chamber after a soak period at higher supercritical pressure, to mechanically weaken break up the polymers and other materials sought to be removed, combined with a supercritical fluid flush to carry away the loose debris.
Abstract:
A method of bonding a particle material to near theoretical density, includes placing a particle material in a die. In the first stage, a pulsed current of about 1 to 20,000 amps., is applied to the particle material for a predetermined time period, and substantially simultaneously therewith, a shear force of about 5-50 MPa is applied. In the second stage, an axial pressure of about less than 1 to 2,000 MPa is applied to the particle material for a predetermined time period, and substantially simultaneously therewith, a steady current of about 1 to 20,000 amps. is applied. The method can be used to bond metallic, ceramic, intermetallic and composite materials to near-net shape, directly from precursors or elemental particle material without the need for synthesizing the material. The method may also be applied to perform combustion synthesis of a reactive material, followed by consolidation or joining to near-net shaped articles or parts. The method may further be applied to repair a damaged or worn substrate or part, coat a particle onto a substrate, and grow single crystals of a particle material.
Abstract:
A high-pressure and a method for high-pressure treatment of substances. The high-pressure press comprises a high-pressure cylinder consisting of a number of concentrically arranged cylinder elements (1, 2, 3). The cylinder elements (1, 2, 3) are radially prestressed to a predetermined prestress and surround a high-pressure chamber (6) for accommodating a pressurized medium. A thin safety liner (3), which is intended to be placed in the high-pressure cylinder until a fracture arises on the safety liner (3), is arranged in the interior of the high-pressure cylinder. Further, means (14, 15) are provided to conduct at least part of the pressurized medium from the high-pressure chamber (6) when a fracture arises on the safety liner (3). The means (14, 15) comprise at least one channel (14) running essentially along the outer envelope surface of the safety liner (3). The method comprises using the high-pressure press without liner replacement until a fracture has occurred on the thin safety liner.
Abstract:
Method and apparatus for densifying an article wherein the article is disposed in a first molten salt pressure transmission medium in a container. The first medium is heated to a first elevated densifying temperature. The container is disposed in a second molten salt pressure transmission medium at a second temperature lower than the first temperature. The first medium and the second medium are communicated so that pressure applied to the second medium is transmitted to the first medium. Pressure is applied to the lower temperature second medium sufficient to densify the article disposed in the first higher temperature medium. Following densification of the article, the container is removed from the second medium. The method and apparatus are especially useful for closing internal porosity of metallic and intermetallic castings.