Abstract:
A device for controlling swinging doors utilizing an externally powered motor to compress a spring during door opening to store energy in the spring. The motor is not used to open the door, but only to compress the spring, thereby utilizing a minimum amount of electrical energy and allowing for a very easy opening of the door. The motor acts as a generator during the closing of the door with generated electrical energy fed back to the motor to retard rotation of the rotor, providing a brake on the closing movement of the door. The feedback circuitry includes a switch for varying the braking during the final degrees of closing movement as well as a variable setting device allowing control of braking force.
Abstract:
A door closer wherein a housing defines a fluid-containing space and rotatably supports a shaft which is articulately connected with a pivotable door panel. A piston in the housing divides the space into a chamber and a compartment and has a toothed rack which mates with a pinion on the shaft so that the piston moves in the housing in response to rotation of the shaft as a result of pivoting of the door panel and vice versa. One or more springs in the chamber bias the piston in a direction to pivot the door panel toward closed position. A channel in the housing establishes communication between the chamber and the compartment during an initial stage of movement of the door panel from closed position at which time the piston moves in a direction to reduce the volume of the chamber. A bypass in the piston provides a path for the flow of fluid from the chamber into the compartment during a following stage of pivoting of the door panel toward open position, and the cross-sectional area of such path increases gradually in a direction from the chamber toward the compartment. The bypass can be provided in the peripheral surface of the piston or in the peripheral surface of the body of a check valve which is installed in the piston and serves to permit the fluid to flow from the compartment into the chamber during pivoting of the door panel toward closed position.
Abstract:
This invention relates to a quarter point return mechanism for a manually driven revolving door. Revolving door leaves extending outwardly from a shaft are partially enclosed between opposed curved sidewalls. The return mechanism has a number of elements including an actuator, a rack arranged to be linearedly displaced by the actuator, and a pinion engaging the rack and being rotatable in opposite directions. The pinion is rotatably connected to the central shaft of the door. When the pinion is rotated in one direction, rotation is transmitted to the shaft. When the pinion is rotated in the opposite direction, the rotation is not transmitted to the shaft. Also included is a circumferential displacement sensor which operates the actuator when the outer ends of the door leaves are in a position circumferentially displaced from the sidewalls. The return mechanism returns the door leaves to a rest position in which the door leaves are in contact with the curved sidewalls. In an alternate embodiment the rack and pinion combination is replaced by a direct connection of the actuator to a one-way clutch. The clutch is then connected to the shaft.