Abstract:
A gas turbine stationary shroud is a curved stationary shroud body having a concave inner gas-path surface and a generally convex back. The curved stationary shroud body is made of an open-cell solid ceramic foam having ceramic cell walls with intracellular volume therebetween. The ceramic foam may be tailored to provide requirement properties. The ceramic adjacent to the gas path surface may be modified to increase or decrease its abrasion resistance, depending upon the design requirements of the stationary shroud. The intracellular volume adjacent to the gas-path surface may be porosity. Some of the ceramic material adjacent to the back of the shroud may be removed, and the intracellular volume adjacent to the back of the shroud may be filled with a nickel-base alloy.
Abstract:
A die cast article such is composed of nickel base superaloy IN 718 is disclosed. The microstructure is characterized by an absence of flowlines and includes a fine average grain size, e.g., ASTM 3 or smaller. Exemplary articles include gas turbine engine components, such as blades, vanes, cases and seals.
Abstract:
The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C. A steam turbine rotor shaft comprising 0.05% to 0.20% by weight of carbon, 0.20% or less by weight of silicon, 0.05% to 1.5% by weight of manganese, 0.01% to 1.0% by weight of nickel, 9.0% to 13.0% by weight of chrome, 0.05% to 2.0% by weight of molybdenum, 0.5% to 5.0% by weight of tungsten, 0.05% to 0.30% by weight of vanadium, 0.01% to 0.20% by weight of niobium, 0.5% to 10.0% by weight of cobalt, 0.01% to 0.1% by weight of nitrogen, 0.001% to 0.030% by weight of boron, 0.0005% to 0.006% by weight of aluminum, and the remaining parts substantially comprising iron and inevitable impurities.
Abstract:
A method for forming an exterior surface of a high-temperature component, such as a blade or vane of a gas turbine engine. The method entails forming a shell by a powder metallurgy technique that yields an airfoil whose composition can be readily tailored for the particular service conditions of the component. The method generally entails providing a pair of inner and outer mold members that form a cavity therebetween. One or more powders and any desired reinforcement material are then placed in the cavity and then consolidated at an elevated temperature and pressure in a non-oxidizing atmosphere. Thereafter, at least the outer mold member is removed to expose the consolidated powder structure. By appropriately shaping the mold members to tailor the shape of the cavity, the consolidated powder structure has the desired shape for the exterior shell of a component, such that subsequent processing of the component does not require substantially altering the configuration of the exterior shell. The airfoil can be produced as a free-standing article or produced directly on a mandrel that subsequently forms the interior structure of the component. In one embodiment, an airfoil is configured to have double walls through which cooling air flows.
Abstract:
A double-wall airfoil for applications such as the blades and vanes of gas turbine engines. The double-wall comprises an outer airfoil skin and an inner support wall that are metallurgically bonded to one another. The double-wall contains integral channels for passage of cooling air adjacent to the airfoil skin. Airfoil skin may be a metal alloy skin or a microlaminate structure, including microlaminate composite structures. Microlaminate composites typically have a lower density than that of the material used for the airfoil support wall, and a simplified internal geometry which promote weight reductions in the airfoils and increases in engine operating efficiency.
Abstract:
A piston for diesel engines is made of a toughness-increasing aluminium alloy containing copper, nickel, silicon, magnesium, iron and manganese. The use of this material, which can conventionally be chill-cast, and by implying special dimensions, provides a piston which, despite its relatively light construction, provides the utmost security against cracking in the stressed regions, e.g. the piston boss or the combustion chamber recess.
Abstract:
An improved method of manufacturing a piston is provided. The piston includes a substantially cylindrical member having a first end and a second end. The cylindrical member includes an open cavity extending axially from the second end to adjacent the first end such that the second end has an inner annular surface defined by an inner diameter. The piston further includes a disk having a radially outer surface defined by an outer diameter fixedly secured to the second end of the cylindrical member. The outer diameter of the disk is substantially equal to the inner diameter of the inner annular surface of the second end of the cylindrical member. A circumferentially extending recessed area for receiving particles produced while fixedly securing the disk to the second end of the cylindrical member is provided on either the radially outer surface of the disk or the inner annular surface of the second end of the cylindrical member.
Abstract:
A movable member slides on a fixed member. The movable member is made of aluminum alloy. An inner layer coats the movable member. The inner layer is made of a material capable of adhering to the aluminum alloy. An outer layer coats the inner layer and contacts the fixed member. The outer layer has greater hardness than the hardness of the inner coating layer.
Abstract:
Wear resistance, seizure resistance, durability and corrosion resistance of an Oldham ring made of an aluminum alloy engaging with a swivel scroll made of an aluminum alloy are improved. The Oldham ring comprises a substrate made of an Al--Si alloy which has a light weight and a high strength, a bond layer of a multiplex zinc base alloy containing Cu and Ni as a primary plating layer which is formed on the substrate, and an electroless Ni--P plating layer having a hardness of MHV550 which is formed on the outermost surface of the Oldham ring.
Abstract:
Disclosed is an aluminum alloy suitable for high temperature applications comprised of at least 9 wt. % Si, 3 to 7 wt. % Ni, 1.5 to 6 wt. % Cu, at least one of the elements selected from Mg, Mn, V, Sc, Fe, Ti, Sr, Zn, B and Cr, the remainder aluminum and impurities.