Abstract:
To enable determination of if there is an influence of foreign-body reactions on the result of quantitative determination conducted with a scattered light measurement method. Proposed is an automatic analysis device including a light source configured to irradiate a reaction solution with light, a plurality of light receivers configured to receive scattered light generated from the reaction solution at different light-receiving angles, a first data processing unit configured to process reaction process data measured by one of the light receivers to quantitatively determine a concentration of a substance in the reaction solution, and a second data processing unit configured to determine if the quantitative determination of the concentration of the substance has been performed normally on the basis of a ratio of a plurality of computed values, the plurality of computed values having been calculated from a plurality of pieces of reaction process data measured by the respective light receivers.
Abstract:
An embodiment of the present invention provides an optical probe, comprising: a first sleeve in which a lens is contained, the first sleeve having a light transmission aperture from which an exciting light enters the first sleeve; a second sleeve movably engaged with the first sleeve and having a detection window from which the exciting light having passed through the first sleeve and focused by the lens exits the optical probe, the second sleeve being capable of moving with respect to the first sleeve from a first detection position to a second detection position or from the second detection position to the first detection position; and a positioning member configured to position the second sleeve at the first detection position or the second detection position with respect to the first sleeve.
Abstract:
An apparatus for measuring an optical component (160, 170, 190) of the apparatus, the apparatus comprising a radiation source (130) configured to form a measuring beam in a measuring channel (140), wherein the measured optical component configured to be in a first position outside the measuring channel and in a second position in the measuring channel; a first detector (110) configured to receive beams in the measuring channel; a second detector (150) configured to receive beams in the measuring channel; at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to select at least one of the first detector and the second detector to receive beams in the measuring channel, the measuring channel (140) being integrated to a photometer or a fluorescence channel of the apparatus; receive a first beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the first position; receive a second beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the second position; and determine the characteristics of the optical component based on the first beam and the second beam.
Abstract:
An object carrier, a system and a method is disclosed for the back light inspection of transparent or semitransparent objects. The carrier has a carrier base layer with photo luminescent properties which carries the transparent or semitransparent object on top of the layer. The transparent or semitransparent object could be a wafer and the object carrier could be a wafer chuck. At least one light source being arranged above the object carrier such that excitation light emitted from the at least one light source is directed through the transparent or semitransparent object to the layer with photo luminescent properties. The light returned from the layer with photo luminescent properties is collected by an objective and registered by a sensor.
Abstract:
An inspection apparatus 1 for solar cells 100 includes: a visible light source 11 adapted to irradiate visible light; a CCD camera 15 adapted to measure a reflection image based on the visible light reflected by an antireflective film of a solar cell 100; an infrared light source 13 adapted to irradiate the solar cell 100 with infrared light; and a CCD camera 16 adapted to measure a transmission image based on the infrared light transmitting through the solar cell 100. In the inspection apparatus 1, as a result of comparing the reflection image and the transmission image with each other, of areas respectively appearing as bright spots in the reflection image, an area appearing as a dark spot in the transmission image is determined as an area including a particle, whereas of the areas respectively appearing as the bright spots in the reflection image, an area other than the area determined as the area including the particle is determined as an area including a pinhole.
Abstract:
An optical field enhancement device that generates an enhanced optical field on a surface of a metal film by an optical field enhancement effect of localized plasmon induced on the surface of the metal film by light projected onto a nanostructure on which the metal film is formed, the device including a transparent substrate having a transparent nanostructure on a surface, a metal film formed on a surface of the nanostructure, and a support member for supporting a subject at a position spaced apart from the surface of the metal film.
Abstract:
Multi-layered targets, design files and design and production methods thereof are provided. The multi-layered targets comprise process layers arranged to have parallel segmentation features at specified regions, and target layer comprising target elements which are perpendicular to the parallel segmentation features of the process layers at the specified regions.
Abstract:
A method measures the flatness of a metal product and an associated device. The method applies to a metal product, in the form of either a strip or a plate from a metallurgical processing line. The product to be measured being, by default, free of external traction. The method contains the following steps: a) illuminating a portion of a face of the product under uniform intensity; b) capturing an image of a light line of the illuminated portion; c) relatively moving the illuminated portion and the light line in a defined direction in relation to the product; d) repeating steps a), b), c); and e) collecting the images of lines in a two-dimensional distribution of intensities and selecting a strand direction of the product in which, if at least one wave of intensities is detected, a local amplitude variation of the wave delivers a local strand flatness defect value.
Abstract:
The invention encompasses analyzers and analyzer systems that include a single molecule analyzer, methods of using the analyzer and analyzer systems to analyze samples, either for single molecules or for molecular complexes. The single molecule uses electromagnetic radiation that is translated through the sample to detect the presence or absence of a single molecule. The single molecule analyzer provided herein is useful for diagnostics because the analyzer detects single molecules with zero carryover between samples.
Abstract:
Metrology tool stage configurations and respective methods are provided, which comprise a pivoted connection arranged to receive a wafer and enable rotation thereof about a pivot; a radial axis arranged to radially move the rotatable pivoted connection attached thereto; and optics having a stationary part configured to generate a collimated illumination beam. For example, the optics may be stationary and the radial axis may be centrally rotated to enable stage operation without requiring additional space for guiding systems. In another example, a part of the optics may be rotatable, when configured to receive illumination via a mechanically decoupled or empty region, receive power and control wirelessly and deliver data wirelessly. The disclosed configurations provide more compact and more robust stages which efficiently handle large wafers. Stage configurations may be horizontal or vertical, the latter further minimizing the tool's footprint.