Abstract:
Systems and apparatuses are presented relating a programmable processor comprising an execution unit that is operable to decode and execute instructions received from an instruction path and partition data stored in registers in the register file into multiple data elements, the execution unit capable of executing group data handling operations that re-arrange data elements in different ways in response to data handling instructions, the execution unit further capable of executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on the multiple data elements stored in registers in the register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results.
Abstract:
The present invention provides a system and method for improving the performance of general-purpose processors by implementing a functional unit that computes the product of a matrix operand with a vector operand, producing a vector result. The functional unit fully utilizes the entire resources of a 128b by 128b multiplier regardless of the operand size, as the number of elements of the matrix and vector operands increase as operand size is reduced. The unit performs both fixed-point and floating-point multiplications and additions with the highest-possible intermediate accuracy with modest resources.
Abstract:
A system and software for improving the performance of processors by incorporating an execution unit operable to decode and execute single instructions specifying a data selection operand and a first and a second register providing a plurality of data elements, the data selection operand comprising a plurality of fields each selecting one of the plurality of data elements, the execution unit operable to provide the data element selected by each field of the data selection operand to a predetermined position in a catenated result.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width and accessible number of general purpose registers.
Abstract:
Methods and software are presented for processing data in a programmable processor, involving (a) decoding instructions for execution using an execution unit operable to execute instructions by partitioning data stored in registers in a register file into multiple data elements, the instructions selected from an instruction set that includes group arithmetic instructions and group data handling instructions, (b) in response to decoding different group arithmetic instructions, executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on multiple data elements stored in registers in the register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results, and (c) in response to decoding different group data handling instructions, executing group data handling operations that re-arrange data elements in different ways.
Abstract:
Methods and software are presented for processing data in a programmable processor, involving (a) decoding instructions for execution using an execution unit operable to execute instructions by partitioning data stored in registers in a register file into multiple data elements, the instructions selected from an instruction set that includes group arithmetic instructions and group data handling instructions, (b) in response to decoding different group data handling instructions, executing group data handling operations that re-arrange data elements in different ways, and (c) in response to decoding different group arithmetic instructions, executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on the multiple data elements stored in registers in the register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results.
Abstract:
Systems and apparatuses are presented relating a programmable processor comprising an execution unit that is operable to decode and execute instructions received from an instruction path and partition data stored in registers in the register file into multiple data elements, the execution unit capable of executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on multiple data elements stored registers in a register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results, wherein the execution unit is capable of executing group data handling operations that re-arrange data elements in different ways in response to data handling instructions.
Abstract:
The present invention provides a system and method for improving the performance of general-purpose processors by implementing a functional unit that computes the product of a matrix operand with a vector operand, producing a vector result. The functional unit fully utilizes the entire resources of a 128b by 128b multiplier regardless of the operand size, as the number of elements of the matrix and vector operands increase as operand size is reduced. The unit performs both fixed-point and floating-point multiplications and additions with the highest-possible intermediate accuracy with modest resources.
Abstract:
A programmable processor that comprises a general purpose processor architecture, capable of operation independent of another host processor, having a virtual memory addressing unit, an instruction path and a data path; an external interface; a cache operable to retain data communicated between the external interface and the data path; at least one register file configurable to receive and store data from the data path and to communicate the stored data to the data path; and a multi-precision execution unit coupled to the data path. The multi-precision execution unit is configurable to dynamically partition data received from the data path to account for an elemental width of the data and is capable of performing group floating-point operations on multiple operands in partitioned fields of operand registers and returning catenated results. In other embodiments the multi-precision execution unit is additionally configurable to execute group integer and/or group data handling operations.
Abstract:
A system and software for improving the performance of processors by incorporating an execution unit configurable to execute a plurality of instruction streams from the plurality of threads, wherein each instruction stream includes a group instruction that operates on a plurality of data elements in partitioned fields of at least one of the registers to produce a catenated result.