Abstract:
An interferometric modulator array device with backlighting is disclosed. The interferometric modulator array device comprises a plurality of interferometric modulator elements, wherein each of the interferometric modulator elements comprises an optical cavity. The interferometric modulator array includes an optical aperture region, and at least one reflecting element is positioned so as to receive light passing through the optical aperture region and reflect at least a portion of the received light to the cavities of the interferometric modulator elements. In some embodiments, the interferometric modulator elements may be separated from each other such that an optical aperture region is formed between adjacent interferometric modulator elements.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate is provided and a desiccant is applied to the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package.
Abstract:
Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate is provided and a desiccant is applied to the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package
Abstract:
A MEMS device is packaged with a control material that is included in the package to affect an operation of a moveable element of the device. The control material may affect operational characteristics including actuation and release voltages and currents, mechanical affects including damping and stiffness, lifetime of the device, optical properties, thermal affects and corrosion. The control material may be inserted into the package as part of any of several structural components of the package or the MEMS device.
Abstract:
This invention provides a precursor film stack for use in the production of MEMS devices. The precursor film stack comprises a carrier substrate, a first layer formed on the carrier substrate, a second layer of an insulator material formed on the first layer, and a third layer of a sacrificial material formed on the second layer.
Abstract:
Described herein are systems, devices, and methods relating to packaging electronic devices, for example, microelectromechanical systems (MEMS) devices, including optical modulators such as interferometric optical modulators. The interferometric modulator disclosed herein comprises a movable mirror. Some embodiments of the disclosed movable mirror exhibit a combination of improved properties compared to known mirrors, including reduced moving mass, improved mechanical properties, and reduced etch times.
Abstract:
MEMS switches are formed with membranes or layers that are deformable upon the application of a voltage. In some embodiments, the application of a voltage opens switch contacts.
Abstract:
The time required for an interferometric modulator to switch from a state with a collapsed cavity to a state with an open cavity or vice versa, i.e., the switch time, is decreased by decreasing the viscosity of the gas filling the cavity. The viscosity is decreased by forming at least a partial vacuum in the cavity. The partial vacuum is formed, in turn, by forming a cavity in a housing holding the interferometric modulator. The vacuum can be generated by a vacuum pump. By decreasing the switch time, interferometric modulators in an array of interferometric modulators can be switched more quickly, thereby advantageously increasing the refresh rate for a display using the array.