Abstract:
Continuous circular motion filling machine is provided for filling containers. The machine includes a rotating platform having an in-feed section disposed to receive empty containers and an out-feed section disposed to transfer filled containers from the rotating platform. A filling turret is disposed generally above the rotating platform and is rotatable at a speed corresponding generally to that of the rotating platform. The turret includes a plurality of filling elements movable between a rest position and a filling position as the turret rotates. Radially extensible and retractable indexing arms are spaced around the platform. The arms are at a retracted position at the in-feed section and are subsequently extended as the rotating platform rotates so as to index the containers into groups on the rotating platform between respective indexing arms. Each group of containers is arranged in a desired pattern and spacing between adjacent arms corresponding to a pattern and spacing of the filling elements.
Abstract:
This invention deals with a novel general concept for a multi-wavelength switching ensemble which is controlled electrically, electromagetically, or magnetically. A switching system is presented that permits the input to control the output. It allows a full 180 degree rotation of the beam which greatly exceeds the rotational capability of conventional systems. Furthermore, the instant invention permits less costly and greater ease of manufacture.
Abstract:
A specially adapted Linnik microscope is used in combination with a video camera, a wafer transport stage and data processing electronics to form a novel inspection apparatus based on the use of the two beam interference microscope. The apparatus can utilize either broad band or narrow band light to develop a plurality of interference images taken at different axial positions relative to the surface under investigation. The point-by-point brightness along scan lines across such images is then used to develop data which is proportional to the degree of coherence (or to the fringe amplitude, the variance of the fringes, or the amplitude of oscillation of the fringes) as the optical path difference is varied in a two beam optical or acoustic microscope.
Abstract:
Devices disclosed according to various embodiments use one or more arrays of atomic magnetometers to directly detection of relaxation of magnetic field induced subatomic precession within a target specimen. The disclosed devices and methods relate to application of utilization of a magnetic sensor with unique properties requiring changes in design, allowing new functions, and requiring alternative analysis methodologies. Various embodiments are also directed to methods for obtaining and processing magnetic signals. These methods may take advantage of the unique spatial arrangement of the atomic magnetometers and the capacity sensors to be used in either a scalar or a vector mode. Various embodiments have advantages over current techniques utilized for imaging of anatomical and non-anatomical structures. Such advantages may include, for example: development of a wearable, portable array, lower power consumption, potential wafer-level fabrication, the potential for development of a more rapid signal, decreased need for development of strong magnetic fields, and lower cost allowing wider availability.
Abstract:
Systems and methods for managing and monitoring a plurality of disparate electrical and/or electronic devices located at various geographically distributed facilities remotely on the basis of an instantaneous location of a user's mobile device that is associated with one or more electrical and/or electronic devices. Remote management of these devices involve transmitting information corresponding to a current location of a user's mobile device that will be managing the devices, without the need for installing additional software on the devices. An energy management system installed within an organization's infrastructure communicates with users' mobile devices and executes power management commands on the electrical and/or electronic devices, for purposes of monitoring and managing several operational aspects related to such devices. Such power management commands can be on-demand dynamic commands provided by a user's mobile device, or predefined commands stored in the energy management system.
Abstract:
A method may include receiving an input from an optimization control that indicates a value along a scale, wherein the value is indicative of a design tradeoff between at least optimization for a first parameter of an electrical design and an optimization for a second parameter of the electrical design, wherein the value places an emphasis on the first parameter and an emphasis on the second parameter such that when the value on the scale is closer to the first parameter a larger emphasis is placed on the first parameter of the electrical design and when the value on the scale is closer to the second parameter a larger emphasis is placed on the second parameter of the electrical design. The method may further include choosing components for the electrical design based on the value indicated using the optimization control, the emphases affecting the components selected for the electrical design.
Abstract:
An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated within a series of spiral-shaped anodes to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to the sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.
Abstract:
The present invention is directed to systems and methods to generate a manifest of work that is to be performed by a driver. Specifically, systems and methods are described in the context of a package delivery system to generate a manifest of deliveries and pickups to be performed by a driver and to download the generated manifest to a portable computing device used by the driver to service the route.
Abstract:
A charged particle beam including charged particles (e.g., electrons) is generated from a charged particle source (e.g., a cathode or scanning electron beam). As the beam is projected, it passes between plural alternating electric fields. The attraction of the charged particles to their oppositely charged fields accelerates the charged particles, thereby increasing their velocities in the corresponding (positive or negative) direction. The charged particles therefore follow an oscillating trajectory. When the electric fields are selected to produce oscillating trajectories having the same (or nearly the same) frequency as the emitted radiation, the resulting photons can be made to constructively interfere with each other to produce a coherent radiation source.
Abstract:
Devices disclosed according to various embodiments use one or more arrays of atomic magnetometers to detect biologically derived magnetic fields. The disclosed devices and methods relate to application of utilization of a magnetic sensor with unique properties requiring changes in design, allowing new functions, and requiring alternative analysis methodologies. Various embodiments are also directed to methods for obtaining and processing biological magnetic signals. These methods may take advantage of the unique spatial arrangement of the atomic magnetometers and the capacity sensors to he used in either a scalar or a vector mode. Various embodiments have advantages over current magnetometer arrays for the purpose of detecting biological magnetic fields. Such advantages may include, for example: smaller size, lower power consumption, no necessity for cryogenic cooling, potential wafer-level fabrication, and/or the potential of better localization biological signals. In addition, various embodiments may allow increased target or subject mobility.