Facet-free strained silicon transistor

    公开(公告)号:US10134899B2

    公开(公告)日:2018-11-20

    申请号:US14983070

    申请日:2015-12-29

    Abstract: The presence of a facet or a void in an epitaxially grown crystal indicates that crystal growth has been interrupted by defects or by certain material boundaries. Faceting can be suppressed during epitaxial growth of silicon compounds that form source and drain regions of strained silicon transistors. It has been observed that faceting can occur when epitaxial layers of certain silicon compounds are grown adjacent to an oxide boundary, but faceting does not occur when the epitaxial layer is grown adjacent to a silicon boundary or adjacent to a nitride boundary. Because epitaxial growth of silicon compounds is often necessary in the vicinity of isolation trenches that are filled with oxide, techniques for suppression of faceting in these areas are of particular interest. One such technique, presented herein, is to line the isolation trenches with SiN to provide a barrier between the oxide and the region in which epitaxial growth is intended.

    Co-integration of tensile silicon and compressive silicon germanium

    公开(公告)号:US10037922B2

    公开(公告)日:2018-07-31

    申请号:US15874813

    申请日:2018-01-18

    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.

Patent Agency Ranking