Abstract:
Methods and apparatus for artificial exciton devices. An artificial exciton device includes a semiconductor substrate; at least one well region doped to a first conductivity type in a portion of the semiconductor substrate; a channel region in a central portion of the well region; a cathode region in the well region doped to a second conductivity type; an anode region in the well region doped to the first conductivity type; a first lightly doped drain region disposed between the cathode region and the channel region doped to the first conductivity type; a second lightly doped drain region disposed between the anode region and the channel region doped to the second conductivity type; and a gate structure overlying the channel region, the gate structure comprising a gate dielectric layer lying over the channel region and a gate conductor material overlying the gate dielectric. Methods are disclosed.
Abstract:
A semiconductor device contains a photodiode which includes a buried collection region formed by a bandgap well to vertically confine photo-generated minority carriers. the bandgap well has the same conductivity as the semiconductor material immediately above and below the bandgap well. A net average doping density in the bandgap well is at least a factor of ten less than net average doping densities immediately above and below the bandgap well. A node of the photodiode, either the anode or the cathode, is connected to the buried collection region to collect the minority carriers, the polarity of the node matches the polarity of the minority carriers. The photodiode node connected to the buried collection region occupies less lateral area than the lateral area of the buried collection region.
Abstract:
A microelectronic device includes a hybrid component. The microelectronic device has a substrate including silicon semiconductor material. The hybrid component includes a silicon portion in the silicon, and a wide bandgap (WBG) structure on the silicon. The WBG structure includes a WBG semiconductor material having a bandgap energy greater than a bandgap energy of the silicon. The hybrid component has a first current terminal on the silicon, and a second current terminal on the WBG semiconductor structure. The microelectronic device may be formed by forming the silicon portion of the hybrid component in the silicon, and subsequently forming the WBG structure on the silicon.
Abstract:
An ESD cell includes an n+ buried layer (NBL) within a p-epi layer on a substrate. An outer deep trench isolation ring (outer DT ring) includes dielectric sidewalls having a deep n-type diffusion (DEEPN diffusion) ring (DEEPN ring) contacting the dielectric sidewall extending downward to the NBL. The DEEPN ring defines an enclosed p-epi region. A plurality of inner DT structures are within the enclosed p-epi region having dielectric sidewalls and DEEPN diffusions contacting the dielectric sidewalls extending downward from the topside surface to the NBL. The inner DT structures have a sufficiently small spacing with one another so that adjacent DEEPN diffusion regions overlap to form continuous wall of n-type material extending from a first side to a second side of the outer DT ring dividing the enclosed p-epi region into a first and second p-epi region. The first and second p-epi region are connected by the NBL.
Abstract:
Disclosed examples include microelectronic devices, e.g. integrated circuits, that include a source region and a drain region extending into a semiconductor substrate, the semiconductor substrate having a second conductivity type, the source region and drain region having an opposite first conductivity type. A channel region having the second conductivity type extends between the source region and the drain region. A gate electrode over the channel region has a first portion and a second portion. The first portion has the second conductivity type and a first dopant concentration. The second portion extends from the first portion toward the source region and has the second conductivity type and a second higher dopant concentration.
Abstract:
An integrated circuit that includes a substrate, a photodiode, and a Fresnel structure. The photodiode is formed on the substrate, and it has a p-n junction. The Fresnel structure is formed above the photodiode, and it defines a focal zone that is positioned within a proximity of the p-n junction. In one aspect, the Fresnel structure may include a trench pattern that functions as a diffraction means for redirecting and concentrating incident photons to the focal zone. In another aspect, the Fresnel structure may include a wiring pattern that functions as a diffraction means for redirecting and concentrating incident photons to the focal zone. In yet another aspect, the Fresnel structure may include a transparent dielectric pattern that functions as a refractive means for redirecting and concentrating incident photons to the focal zone.
Abstract:
A system on an integrated circuit (IC) chip includes an input terminal and a return terminal, a heater, a thermopile, and a switch device. The heater is coupled between the input terminal and the return terminal. The thermopile is spaced apart from the heater by a galvanic isolation region. The switch device includes a control input coupled to an output of the thermopile. The switch device is coupled to at least one output terminal of the IC chip.
Abstract:
Integrated circuit apparatus, and their manufacturing methods, including an integrated power transistor and thermocouple. The power transistor is constructed in a plurality of layers formed over a semiconductor substrate. The thermocouple includes a p-thermopile and an n-thermopile that are each electrically isolated from the power transistor and the semiconductor substrate while being sensitive to temperature differences within the IC resulting from operation of the power transistor. The p-thermopile includes a p-type thermoelectric body formed in a p-type one or more of the plurality of layers. The n-thermopile includes n-type thermoelectric body formed in an n-type one or more of the plurality of layers.
Abstract:
A first silicon controlled rectifier has a breakdown voltage in a first direction and a breakdown voltage in a second direction. A second silicon controlled rectifier has a breakdown voltage with a higher magnitude than the first silicon controlled rectifier in the first direction, and a breakdown voltage with a lower magnitude than the first silicon controlled rectifier in the second direction. A bidirectional electrostatic discharge (ESD) structure utilizes both the first silicon controlled rectifier and the second silicon controlled rectifier to provide bidirectional protection.
Abstract:
An optical sensor includes a semiconductor substrate having a first conductive type. The optical sensor further includes a photodiode disposed on the semiconductor substrate and a metal layer. The photodiode includes a first semiconductor layer having the first conductive type and a second semiconductor layer, formed on the first semiconductor layer, including a plurality of cathodes having a second conductive type. The first semiconductor layer is configured to collect photocurrent upon reception of incident light. The cathodes are configured to be electrically connected to the first semiconductor layer and the second semiconductor layer is configured to, based on the collected photocurrent, to track the incident light. The metal layer further includes a pinhole configured to collimate the incident light, and the plurality of cathodes form a rotational symmetry of order n with respect to an axis of the pinhole.