Abstract:
A capacitive touch device and a sensing method thereof are disclosed. The capacitive touch device includes a touch panel and a plurality of touch detection units. The touch panel includes first sensing lines and second sensing lines. The position of a touch between a last one of the first sensing lines and a first one of the second sensing lines is calculated according to sensed values respectively corresponding to a first sensing line prior to the last one of the first sensing lines, the last one of the first sensing lines and the first one of the second sensing lines. The present invention is capable of avoiding the problem that the frame rate is reduced significantly because of the data transmission between the first and second touch detection units.
Abstract:
An on-chip temperature sensing device is disclosed. The disclosed on-chip temperature sensing device is capable of sensing an environmental temperature of the chip. The device comprises a reference generating circuit, a first oscillator, a second oscillator, and an arithmetic logic unit. The reference generating circuit is configured to generate a first control voltage to control the first oscillator and the second oscillator. The bias current of the first oscillator and the bias current of the second oscillator are both controlled by the first control voltage so that the bias current of the first oscillator is directly proportional the bias current of the second oscillator regardless the environmental temperature. The first oscillator generates a first oscillation signal, while the second oscillator generates a second oscillation signal. The arithmetic logic unit may calculate the environmental temperature according to the first oscillation signal and the second oscillation signal.
Abstract:
An image compensation device is disclosed. The image compensation image compensation device comprises a 3D band pass filter, a 3D notch filter, a 3D notch mixing unit, a 3D summing unit, a non-3D notch filter, a non-3D band pass filter, a non-3D notch mixing unit, a non-3D band pass mixing unit, and a non-3D summing unit. The 3D notch mixing unit is used for compensating an output of the 3D notch filter. The non-3D notch mixing unit is used for compensating an output of the non-3D notch filter. The non-3D band pass mixing unit is used for compensating an output of the non-3D band pass filter. The image compensation device of the present invention is capable of avoiding the unstable and sparkle-like situation in the prior arts.
Abstract:
An image sharpness device and a method for the same are disclosed. The image sharpness device includes a DC removal unit, at least one filter, at least one noise estimation unit, at least one soft threshold processing unit, and a summing unit. The DC removal unit receives a luminance signal of a field of a frame and removes a DC component of the luminance signal. The filter passes a component of an output of the DC removal unit within a predetermined frequency band. The noise estimation unit estimates a noise value of the field. The soft threshold processing unit forms a sharpness signal according to the noise value. The summing unit sums the luminance signal and the sharpness signal to output a resultant luminance signal. The present invention is capable of avoiding the problem that a noise in the luminance signal is enhanced.
Abstract:
A method for calculating a touch coordinate on a touch panel is provided, the touch panel having a plurality of points, said method comprising: determining a group of candidate points when a touch occurs on the touch panel, each candidate point having one sensing value; assigning weights to the sensing values of the respective candidate points to obtain weighted sensing values; and calculating a coordinate by utilizing the weighted sensing values and positions of the respective candidate points. By using said method, the calculation result of the touch coordinate will be more stable.
Abstract:
A sensing device placed in a touch sensing system of a display device includes a selector, a sensing module, and a detection module for determining touch signals generated by the touch sensing system. The selector selects two of the touch signals according to at least one selection control signal. The sensing module comprises a first differential amplifier for comparing the selected touch signals and producing a first differential signal according to first control signals. According to second control signals, the detection module receives the first differential signal, generates an averaged sensing value and a reference value, and compares the averaged sensing value with the reference value to produce a second differential signal. Thereby, the touch sensing system uses the second differential signal to generate the first control signals and the second control signals to control the operation of the touch sensing system.
Abstract:
A device for outputting a luminance signal is disclosed. The device includes a chrominance judgment unit, a field observation unit, and an output unit. The chrominance judgment unit and the field observation unit are used to determine whether a 3D luminance signal is affected. The output unit outputs a resultant luminance signal according to the determination results of the chrominance judgment unit and the field observation unit. According to the present invention, the resultant luminance signal can be accurately obtained by judging characteristics of the 3D luminance signal and a 3D chrominance signal even if a 3D comb filter is wrongly used in a motion condition.
Abstract:
A feature-based contrast enhancement apparatus comprises a histogram calculator, a feature value calculator, a first combining circuit, a histogram equalizer and a remapper. By keeping the hardware cost as low as a picture-based contrast enhancement apparatus, the invention has an advantage of suppressing the background noise and enhancing the image details.
Abstract:
A touch panel device includes a touch panel and a controller. The touch panel includes a first region and a second region. The first region includes a plurality of first driving conductors extended along a first direction, and a plurality of first sensing conductors extended along a second direction perpendicular to the first direction. The second region includes a plurality of second driving conductors extended along the first direction, and a plurality of second sensing conductors extended along the second direction. The controller is used for outputting a plurality of driving signals in an ordered sequence of the second direction to drive the plurality of first driving conductors and the plurality of second driving conductors, and for receiving a plurality of sensing signals from the plurality of first sensing conductors and the plurality of second sensing conductors in an ordered sequence of the first direction.
Abstract:
A frame rate up-conversion apparatus comprises a motion vector detecting circuit, a dynamic quality control circuit, a motion compensation circuit and a pull-down recovery circuit. According to quality of motion vectors, a corresponding image output mode is determined dynamically. A visual impact due to incorrect motion vectors is reduced and the visual experience is also improved.