Abstract:
The present disclosure provides for a method of monitoring the mean arterial pressure of a patient having a blood pump. The method may involve identifying a segment of time associated with diastole of the patient's cardiac cycle, determining a first parameter of the blood pump corresponding to the identified segment of time, and estimating the mean arterial pressure of the patient based at least in part on the first parameter.
Abstract:
An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
Abstract:
A total artificial heart having a rotor with an impeller, wherein the rotor is mounted within a pump housing on a hollow shaft. The rotor is magnetically driven to produce rotary motion of the impeller for pumping blood. The motor is disposed within the pump housing such that axial translation within the housing acts as a shuttle valve to alternate flow between pulmonary and systemic circulation.
Abstract:
An operable implant adapted to be implanted in the body of a patient. The operable implant comprising an operation device and a body engaging portion, the operation device comprises an electrical motor comprising a static part comprising a plurality of coils and a movable part comprising a plurality of magnets, such that sequential energizing of said coils magnetically propels the magnets and thus propels the movable part. The operation device further comprises an enclosure adapted to hermetically enclose the coils of the static part, such that a seal is created between the static part and the propelled moving part with the included magnets, such that the coils of the static part are sealed from the bodily fluids, when implanted.
Abstract:
The present invention relates to a heart pump apparatus comprising a turbine pump for assisting the heart of a human patient. The invention is based on the realization that a turbine without a center axis would improve the capacity of the heart help pump apparatus. The present invention also relates to a turbine pump system for assisting the heart of a human patient. The present invention also relates to operation methods and methods for surgically placing a rotating body of a turbine pump and a stator of a turbine pump in a patient.
Abstract:
A total artificial heart having a rotor with an impeller, wherein the rotor is mounted within a pump housing on a hollow shaft. The rotor is magnetically driven to produce rotary motion of the impeller for pumping blood. The motor is disposed within the pump housing such that axial translation within the housing acts as a shuttle valve to alternate flow between pulmonary and systemic circulation.
Abstract:
A method for assisting blood circulation in a patient includes drawing a flow of blood from a patient's heart into a blood flow channel formed by a housing. The flow of blood is passed through a motor stator to a rotor disposed within the blood flow channel. The motor stator is arranged circumferentially around the blood flow channel. The rotor has permanent magnetic poles for magnetic levitation and rotation of the rotor. The motor stator is controlled to act as a radial bearing for magnetic levitation of the rotor and to rotate the rotor within the blood flow channel. The rotor is levitated within the blood flow channel in the direction of the rotor axis of rotation via passive magnetic interaction between the rotor and the motor stator. The flow of blood is output from the blood flow channel to the patient.
Abstract:
This centrifugal blood pump apparatus includes an impeller provided in a blood chamber, a permanent magnet provided in one surface of the impeller, and a permanent magnet provided in an inner wall of the blood chamber, for attracting the permanent magnet. A centerline of the permanent magnet is arranged at a position different from that of a centerline of a sidewall of the blood chamber such that a rotation centerline of the impeller matches the centerline of the sidewall of the blood chamber during pump operation. Therefore, high torque transmission efficiency is obtained.
Abstract:
The invention is a new generation permanent heart assist device developed to be installed into great arteries such as trans-aortic and trans-pulmonary artery to maintain blood circulation of the patients with end-stage heart failure. This device is a sort of brushless, synchronous, servo, electric motor which uses direct driver technology. It consumes little energy and provides high blood flow. The specially designed hollow rotor without a pivot pin provides enough blood flow to the patient by pushing the blood forward with the helical winglets inside it. The risk of thromboembolic events on the foreign surface that contacts with blood is less than in the counterparts of this device. Finally, the invention; is a curved permanent heart assist device that is applied on the aortas, reinforced twice with double stators and designed in smaller size so as not to compress surrounding tissues and organs.
Abstract:
A blood pump apparatus includes a housing having a blood inlet port and blood outlet port, a pump unit including an impeller that rotates within the housing, and an impeller rotational torque generation section. The housing includes a plurality of magnetic members embedded between the impeller and the impeller rotational torque generation section for transmitting a magnetically attractive force generated by the impeller rotational torque generation section to an impeller body. The pump device includes a non-contact bearing mechanism for rotating the impeller without contacting with the inner surface of the housing when the impeller is rotated by the impeller rotational torque generation section.