Abstract:
A circuit is disclosed for driving a piezo ceramic device as used in smoke alarms or other audio warning devices. The circuit detects the resonant frequency of the piezo horn and provides an alternating current at the resonant frequency of the horn for maximum sound output. The circuit has a self starting resonant oscillation characteristic. Two pairs of switches act in concert to alternatingly connect each side of the piezo horn to the supply voltage and ground, causing the maximum voltage swing across the piezo horn to be effectively twice the available power supply voltage.
Abstract:
A motional bridge circuit for generating feedback signals proportional to the vibration of an ultrasonic transducer is modified by means of an active filter in the feedback circuit which is coupled to a starting circuit that raises the Q of the active filter when a signal is not present in the feedback loop to change the active filter from a mode suppressant to a self-oscillating state.
Abstract:
A driving circuit for ultrasonic tools which uses a piezoelectric transducer to convert ultrasonic electric signals into ultrasonic mechanical vibrations including a voltage-controlled oscillator which produces an output signal at a frequency that is proportional to an input voltage, a power amplifier stage having its input coupled to the output of the voltage-controlled oscillator, the power amplifier stage including an output transformer which couples the output of the power amplifier stage to the piezoelectric transducer, the power output transformer further acting as both an insulating transformer and a boosting transformer for the driving circuit and a feedback transformer coupled in series with the secondary side of the output transformer and the piezoelectric transducer, the feedback transformer having a secondary side through which a current flows which is proportional to the current flowing through the piezoelectric transducer, a phase comparitor which detects the phase difference between two signals applied to two inputs of the phase comparitor, the two inputs being respectively coupled to the output signal of the voltage controlling oscillator and the secondary side of the feedback transformer and a low pass filter which blocks high frequency components to pass therethrough connected between an output of the phase comparitor and the input of the voltage controlled oscillator.
Abstract:
A diode and a coil are connected in series to the output side of a driving circuit switched ON and OFF upon receipt of a pulse signal and a piezoelectric vibrator is connected in parallel with the series-connected diode and coil. The piezoelectric vibrator is driven by a reverse induced voltage produced in the coil when the driving circuit is switched OFF so as to apply more electric energy for driving the piezoelectric vibrator than would be the case if the diode were omitted.
Abstract:
A drive circuit for a piezo-electric crystal stack comprises an inductor, a first circuit including a diode and a transistor through which the inductor can be connected to a pair of d.c. supply terminals, the first circuit including a switch operable to reduce the current flow through the inductor, a second curcuit including a diode through which energy from the inductor is transferred to the stack of crystals when the current flow through the inductor is reduced. The drive circuit also includes means for transferring energy from the stack of crystals to the inductor when it is required to increase current flow in the inductor.
Abstract:
Devices are disclosed using ultrasonic vibratory energy for atomizing water, gasoline or other liquids, for use in humidifiers, carburetors, and the like. A humidifier or atomizer is disclosed comprising an ultrasonic transducer having a vibratory member, together with means for producing ultrasonic vibrations thereof, a liquid supply conduit for directing a liquid into contact with the vibratory member, and a collection receptacle disposed below the vibratory member for collecting the liquid when the ultrasonic transducer is not in operation. The ultrasonic transducer may comprise an elongated front end mass, an elongated tail mass, a pair of piezoelectric elements disposed between such masses, an electrode plate disposed between the piezoelectric elements, means for clamping such masses together, with the piezoelectric elements and the electrode plate therebetween, and a mounting member having an opening therein slidably receiving the piezoelectric elements and portions of such masses, the mounting member having an internal peripheral slot within such opening for slidably receiving the electrode plate. The opening and the slot having a sufficiently loose fit with the piezoelectric elements, the masses and the electrode plate to obviate any substantial damping of ultrasonic vibrations. The transducer may be driven by a circuit comprising a solid state amplifier having input and output connections, a driver transformer having a primary winding connected to such output connection and a secondary winding connected to the electrodes of the piezoelectric transducer, a feedback transformer having a secondary winding connected to such input connection of the amplifier, and a primary winding connected to such electrodes through a phase shifting circuit.
Abstract:
In apparatus for producing a unipolar displacement of the radiating face of an electroacoustic transducer to generate unipolar acoustic pulses in an acoustic medium, the transducer dimension perpendicular to the radiating face of the transducer is chosen to simplify the response of the transducer, thereby simplifying the required transducer driving signals and the apparatus required to generate those signals.
Abstract:
In apparatus for driving a piezoelectric ceramic element by applying a driving voltage across a pair of driving electrodes of the ceramic element, there are provided a phase detector connected to one driving electrode for detecting the phase of the current flowing through the ceramic element as a voltage phase, an amplifier connected to the other driving electrode for supplying thereto a driving voltage, and a phase shifter to positively feed back the output from the phase detector to the amplifier for coinciding the voltage phase and the current phase of the ceramic element so as to drive the same at the most suitable driving frequency.
Abstract:
An oscillatory circuit, operating in the ultrasonic or high sonic frequencies, generates power for a piezo-electric transducer in proportion to mechanical resistances or loadings encountered by the transducer. High sensitivity and instantaneous power adjustment to a wide variety of loads is obtained, and instant ''''turn-on'''' and ''''turn-off'''' at the adjusted power settings are secured, by a circuit in which the input to the first stage of a two-stage oscillatory circuit comprises the sum of three feedback components plus a DC forward bias.
Abstract:
A high-efficient oscillatory circuit drives a piezoelectric crystal (transducer) which is coupled to an ultrasonic cleaning tank. The circuit includes a transistor switching means in the driver side of the oscillator. The primary winding of the transformer is coupled in parallel with a capacitor and forms a circuit having a resonant frequency which is a multiple even integer of the resonant frequency of the crystal which is coupled to the transformer secondary winding.