Abstract:
A sensor device, comprising two symmetrically disposed sonolucent wedges (5), and a connecting piece for fixedly connecting the two sonolucent wedges (5); the upper surfaces of the sonolucent wedges (5) are provided with inclined planes; installation holes are formed on the inclined planes; transducers (3) are installed in respective installation holes; one transducer (3) is used to generate ultrasonic waves, and the other transducer (3) is used to receive the ultrasonic waves generated by the previous transducer (3). The residual stress detection system comprises a sensor device, an ultrasonic transmission card, and a data acquisition card.
Abstract:
A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. An example system includes a number of ultrasonic transducers configured to transmit ultrasonic waves towards a target region on a specimen, a voltage source configured to excite the first and second ultrasonic transducers, and a processor configured to determine one or more properties of the specimen.
Abstract:
A detection system for identifying deterioration in a structure is provided that has acoustic sensors that receive acoustic emission waves. The acoustic emission wave detected by the acoustic sensor is identified as a hit. An analysis circuit is present that identifies an A state, a B state, and a C state. The B state has increased hit activity from the A state where a rate B is greater than a rate A by a factor of f1. The C state has increased hit activity from the B state where a rate C is greater than the rate A by a factor of f2. An alarm is activated when an amount of time that the C state is identified as being present reaches a value of TM, or alternatively when a threshold value based upon of the number of hits and time in the C state is reached.
Abstract:
Methods and apparatus, including computer program products, are provided for determining rail stress. The method may include generating at least one ultrasonic guided wave to enable the at least one ultrasonic guided wave to propagate through a rail; detecting at least one of a fundamental frequency component of the at least one ultrasonic guided wave, one or more harmonics of the at least one ultrasonic guided wave, and/or a mixing component of the at least one ultrasonic guided wave; and determining a stress of the rail based on at least a nonlinearity parameter determined from the detected at least one of the fundamental frequency component, the one or more harmonics, and the mixing component. Related apparatus, systems, methods, and articles are also described.
Abstract:
A complex device includes: a substrate having a thick portion, a cavity and a membrane for bridging the cavity; and multiple piezoelectric elements having a lower electrode, a piezoelectric film and an upper electrode. A part of the piezoelectric elements has a projecting portion arranged on the upper electrode. The part of piezoelectric elements (30) provides a vertical pressure detection element. The piezoelectric elements further have an ultrasonic element other than the vertical pressure detection element. The ultrasonic element is arranged over at least the cavity of the substrate in a horizontal direction.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
A method, apparatus and software is disclosed for using parameters of acoustic emissions emitted from an structure, such as aircraft landing gear, for detecting yield in the structure.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
The invention relates to a stress gauge of the type having an acoustic resonant structure, including a piezoelectric transducer (10) connected to a holder (20), the holder (20) including opposite the piezoelectric transducer (10) an imbedded reflecting portion (40). The imbedded reflecting portion (40) reflects the volume acoustic waves generated by the piezoelectric transducer (10) when it is excited according to a harmonic mode of the structure and propagating into said holder (20), the reflecting portion (40) being arranged at a distance from the piezoelectric transducer (10) such that the integral of the stress on the propagation distance of the volume acoustic waves up to their reflection is different from zero.