Abstract:
Systems, methods and devices for the automated retrieval/delivery of goods from one location to another using a robotic device such as a tug and accompanying cart. A computer within the tug/cart stores a map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or continuously adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
Abstract:
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
Provided are an autonomous mobile robot capable of detouring an obstacle, and a method thereof. The autonomous mobile robot includes a moving object; an extension unit connected to the moving object and extending in proportion to a pulling force of the moving object; a drive unit moving the autonomous mobile robot toward the moving object corresponding to the pulling force of the object connected to the extension unit; a route information obtaining unit obtaining route information according to an extension length to which the extension unit extends corresponding to the pulling force of the moving object; an obstacle detecting unit detecting presence of an obstacle placed within a predetermined distance in a moving direction of the autonomous mobile robot that is being led by the moving object; and a control unit controlling the drive unit such that the autonomous mobile robot moves along a route based on the route information. Accordingly, collision between the obstacle and the autonomous mobile robot can be prevented, and the autonomous mobile robot can naturally detour the obstacle.
Abstract:
A graphical user interface for a remote controlled robot system that includes a robot view field that displays information provided by a robot and an observer view field that display observer information about one or more observers that can receive the robot information. The interface has various features that allow a master user to control the observation and participation of the observers.
Abstract:
An autonomous mobile device has its movement controlled by a control device and includes a first sensing unit for sensing an obstacle. The control device includes a first storage unit for storing information as to a temporary positional fluctuation of the obstacle and sets as a virtual obstacle region a region where it is predicted that the obstacle sensed by the first sensing unit travels following a predetermined time passage based on the information as to the temporary positional fluctuation of the obstacle stored in the first storage unit.
Abstract:
A robotic cart pulling vehicle includes a positioning error reducing system for reducing accumulated error in the ded-reckoning navigational system. The positioning error reducing system including at least one of a low load transfer point of the cart attaching mechanism, a floor variation compliance structure whereby the drive wheels maintain a substantially even distribution of load over minor surface variations, a minimal wheel contact surface structure, a calibration structure using at least one proximity sensor mounted on the robot body, and a common electrical and mechanical connection between the cart and the robot vehicle formed by a cart attaching post.
Abstract:
A robot of the present invention moves to a place where a user is, in response to the voice of the user who is calling the robot. Then, when the user presses a switch, the robot recognizes that the user desires to send an urgent call and dials a pre-registered telephone number for sending urgent calls. When a receiver responds, the robot reads out and delivers a predetermined message to the receiver as a voice message, and switches the telephone to the handfree state so that the user can talk without holding the telephone.