Abstract:
A management control device controls multiple unmanned vehicles, including the overtaking of a vehicle using an opposite lane. First and second travel permission sections are set for an own vehicle and another vehicle in a stopped state located ahead of the own vehicle on a traveling lane. A path by which the own vehicle overtakes the other vehicle is generated to include a first transition section to change lanes from a traveling lane to an opposite lane, an overtaking section that connects to the first transition section. Also included is a second transition section that connects to the front end of the overtaking section and is for the own vehicle to return to the traveling lane. The section length of the second travel permission section being set in advance is thereby shortened.
Abstract:
An operation control system for a mining machine includes, based on travel path information including at least information on moisture content of a travel path on which a mining machine operating at a mine runs, and position information being information on a position of a travel path corresponding to the travel path information, generating speed limit information for changing a speed limit for the mining machine to run on the travel path corresponding to the travel path information.
Abstract:
A method for controlling a work machine, includes: detecting an area present ahead in a traveling direction of a work machine, in which a target traveling speed of the work machine is constant and is lower than a traveling speed at a current point of time; when the area is detected, obtaining a corrected value for correcting the accelerating instruction value; adding the corrected value and an accelerating instruction value for controlling a traveling speed of the work machine obtained based on the target traveling speed to obtain a corrected accelerating instruction value; and outputting the corrected accelerating instruction value to a drive device configured to drive a traveling device in the work machine.
Abstract:
A mine management system includes generating unmanned vehicle traveling data including a target traveling route of an unmanned vehicle, acquiring unmanned vehicle current situation data at first time point, acquiring manned vehicle current situation data at the first time point, estimating a range in which the unmanned vehicle may be present at second time point based on the unmanned vehicle traveling data and the unmanned vehicle current situation data, estimating a position where a manned vehicle may be present at the second time point based on the manned vehicle current situation data, and deriving a risk level indicating a possibility of collision between the manned vehicle and the unmanned vehicle corresponding to the second time point at the first time point per position where the manned vehicle may be present based on estimation results of estimating the unmanned vehicle existence range and the manned vehicle existence position.
Abstract:
A haulage vehicle comprises: a position calculating system (220) calculating an estimated position of its own vehicle; a position range calculating unit (201b) calculating a position range which is centered around the estimated position and in which the haulage vehicle is present with a predetermined expected probability; a maximum deviation amount calculating unit (602) calculating a maximum deviation amount indicating a highest value among the amounts of deviations between a target route of the haulage vehicle and each of points included in the position range; a target vehicle-speed decision unit (603) setting a target vehicle speed of the haulage vehicle to be relatively low when the maximum deviation amount is relatively large; and a target route-tracing unit (201g) performing control for the haulage vehicle to travel along the target route in compliance with the target vehicle speed.
Abstract:
A method for initiating a remote operation mode of a work machine, the method including providing the work machine with a work machine-specific safety key; receiving, at a remote control station, a notification from the work machine in response to initiating the remote operation mode of the work machine by said safety key; acknowledging the work machine as being included in a safety system of the remote control station; and configuring the remote control station to start the remote operation mode of the work machine.
Abstract:
A method of determining position and direction of an object of a mine vehicle, the mine vehicle including at least one scanning device for scanning surroundings of the mine vehicle and producing a point cloud data. The mine vehicle has a control unit, which is provided with reference data on the monitored object. The control unit is configured to search the monitored object from the scanned point cloud data and to determine position and direction of the object.
Abstract:
A method and mine vehicle includes at least one scanning device for scanning surroundings of the mine vehicle and producing operational point cloud data. The mine vehicle has a control unit provided with reference point cloud data of the mine. The control unit is configured to match the operational point cloud data to the reference point cloud data in order to determine position of the mine vehicle. The control unit further includes a mine work plan, which is connected to the detected position of the mine vehicle.
Abstract:
A mining vehicle is provided, which is capable of appropriately recognizing a condition of a traveling road in front of the vehicle, preventing an obstacle on a roadside from being erroneously detected by a distance detector, and controlling the speed of the vehicle in a stable manner even when the vehicle is approaching a curved portion of the road from a linear portion of the road.The mining vehicle that travels on a transport road of a mining site includes: a minimum roadside distance determining unit; a traveling status calculator configured to calculate traveling status of the vehicle and a turning radius of the vehicle; a roadside distance calculator configured to calculate a roadside distance between the vehicle and a roadside of the transport road; a roadside distance selector configured to select and output a minimum roadside distance if the vehicle is in a rectilinearly traveling state and select and output the roadside distance calculated with the roadside distance calculator if the vehicle is in a turning state; a detected distance limiter configured to disable a signal representing the distance, detected with the distance detector, between the vehicle and the object and the relative speed if the distance between the vehicle and the object is larger than a distance represented by a signal selected and output from the roadside distance selector; and a vehicle speed controller configured to control the speed of the vehicle on the basis of a signal output from the detected distance limiter.
Abstract:
Based on initial position information on an instructed fixed switch-back point and position information on a loading point, a relative positional relationship between the loading point and the switch-back point is generated. If the position of the loading point moves, then based on position information on the position-moved loading point, information on a direction of an unmanned vehicle at the loading point and information on a relative positional relationship, a new switch-back point is set at a position where the relative positional relationship can be maintained. When the initial position of the switch-back point is instructed, then on the basis of the initial position information on the switch-back point, a driving path leading to the loading point via the instructed switch-back point is generated and, when the position of the loading point moves, a driving path leading to the position-moved loading point via the new switch-back point is generated.