Abstract:
A cathode structure comprises a substrate including a porous sinter of a metal having a high melting point, which is impregnated with electron emitting material, a metal cup for receiving the substrate, a layer of solder disposed between the substrate and the metal cup, a covering layer disposed between the substrate and the solder layer and made of a metal having a melting point higher than that of the solder, a metal sleeve for supporting the metal cup, and a heater.
Abstract:
A dispenser cathode such as a metal capillary cathode for electrical discharge devices which has a hollow cylindrical head portion 1 which carries a porous emission wafer 3 of a refractive material at its upper end and covers a cathode cartridge 2 which contains an active material supply 4 and comprises an epoxy helical heater 5 surrounded by a metal sleeve 6. Two part division of the structure allows separate testing possibility of the emission wafer and the heater/supply cartridge and also allows an improvement in the heat transmission from the heater to the emission wafer. For this purpose, a hollow cylindrical head portion 1 is conically-shaped and expands outwardly toward the cathode cartridge 2 and the upper part of the cathode cartridge 2 is conically tapered so as to mate with the hollow cylindrical head portion and the two portions are connected together wherein their conical side walls are attached by welding in the upper portion of the drawn up metal sleeve. The dispenser cathode can be used in travelling wave tubes for example.
Abstract:
By providing the cathode, in a diode electron gun in a television camera tube, with an at least 40 .mu.m high collar extending in the direction of the anode, the anode current is considerably reduced.
Abstract:
A controlled porosity sheet defining a surface for a thermionic dispenser thode and a method of manufacture. Starting with a generally flat silicon template substrate structure having an array of upstanding microposts 1-25 microns across on 5-100 micron spacings from each other, a layer of metal is deposited on the substrate to surround the microposts and cover the substrate structure to a desired depth. The metal layer is then abraded to a smooth, flat surface which exposes the microposts. Thereafter, the silicon substrate and microposts are completely etched away, leaving a metal sheet having micron-size holes therethrough.
Abstract:
In a controlled-porosity dispenser cathode of the type which has a foil w a plurality of holes covering the emitting material so that emitting material is dispensed through the holes to the electron-emitting surface of the foil and electrons are actually emitted through the holes and a small area surrounding each hole, a non-emitting shadow grid is laid down on the surface of the foil in such a configuration that it does not obstruct any of the emitting holes, has the same shape as the control grid, and is substantially in precise registration with the control grid.
Abstract:
A dispenser cathode is fabricated by covering a reservoir of electron emitting material with a perforated metal foil having an appropriate pattern of pore-sized apertures thereon for providing uniform electron emission from the cathode surface. The electron emitting material is in the form of a pellet of barium oxide impregnated with a wax or resinous material to minimize chemical reduction of the barium oxide in air. The impregnated barium oxide pellet is sandwiched between the apertured foil and a support structure to which the foil is welded. During tube bake-out or subsequently during cathode activation, the wax or resinous material evaporates and barium oxide migrates through the apertures to cover the surface of the foil in a uniform manner. The desired pattern of apertures in the foil is achieved by photolithography, or by forming the foil (e.g., by chemical vapor deposition, sputter deposition, evaporation, or sintering) on a substrate containing an array of protruding posts. With the photolithographic technique, the desired pattern of apertures is chemically etched directly on the foil; and with the technique in which the foil is formed on a substrate having an array of posts, the substrate with its protruding posts is removed by chemical etching after the foil has been formed. With either technique for forming the apertures, a shadow grid can also be formed as an integral part of the cathode surface by depositing a layer of reactive material such as zirconium or graphite on a selected portion of the cathode surface. This layer of reactive material prevents the formation of an emitting layer of barium oxide on a selected pattern on the cathode surface.
Abstract:
A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode.The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.
Abstract:
The performance of microwave tubes at very high frequencies is limited by the ability of their thermionic cathodes to provide high emission current density in combination with long life and low evaporation of active material. An improved tube uses a cathode comprising a porous metal matrix consisting of a compacted mixture of tungsten and iridium particles, impregnated with a molten barium aluminate. Other alkaline earth oxides may be used as additives. The impregnated cathode outgasses easily and has a long life because it is not dependent on thin surface films. Thermionic emission is improved compared to a tungsten matrix, and barium evporation is reduced. The combination of power and frequency obtainable from the microwave tube is thereby significantly increased.
Abstract:
A method of manufacturing a storage cathode comprising the steps of forming a first layer of electron emissive material in a holder, said layer comprising a loose mixture of coarse and fine granulated particles of electron emissive material, depositing on said first layer a second layer consisting essentially of loose tungsten particles and compressing said layer in the holder at the sintering temperature below the fusion temperature of the electron emissive material to sinter the second layer and form a unitary body of the layer in the holder.