Abstract:
An image reading apparatus is provided which includes a cold-cathode tube for irradiating a linearly extending image reading section, and a plurality of light receiving elements for receiving light reflected at the image reading section. The cold-cathode tube is provided with a first end portion, a second end portion, and an intermediate portion arranged between the first end portion and the second end portion. At least one of the first and the second end portions extends in a direction differing from another direction in which the intermediate portion extends. The image reading apparatus is also provided with a suitable number of shield members for preventing relatively weak image signals supplied by the light reading elements from being adversely influenced by electrical noises.
Abstract:
An integrated image module for a document scanner includes a one piece die cast housing having a datum element and a support element. An imaging sensor array is enclosed in the housing. An array bias element urges the imaging sensor array against the datum element to provide accurate placement of the sensor array relative to the housing. A transport mechanism is attached to the housing so that the position of the transport mechanism accurately corresponds to the position of the imaging sensor array. The lens and the lamp for illumination are also attached to the housing so that the primary components of the imaging portion of the scanner are contained in a single module.
Abstract:
A sensor unit and LEDs are arranged on a sensor board. A light guide is placed above the resultant structure with be parallel to the sensor. The two end portions of the light guide are bent downward at right angles, and the bent end portions serve as incident portions on which light beams from the LEDs are incident. Light entering the light guide emerges from an exit portion to be irradiated on an original. The light reflected by the original is read by the sensor. The direction in which the reflected light is incident on the sensor is parallel with the direction in which the light from each LED is incident on the incident portion. With this structure, in the image sensor, electrical connection between the LEDs, the sensor unit, and an external system is facilitated.
Abstract:
An image reading apparatus is provided which includes a cold-cathode tube as a light source for illuminating a document sheet, an inverter for providing the light source with driving power. A connection cable is used for electrically connecting the light source to the inverter. The image reading apparatus also includes three kinds of rows of light receiving elements arranged in the primary scanning direction for detecting the light reflected on the document sheet. A lens array is provided for focusing the reflected light at the respective rows of light receiving elements. The light receiving elements are mounted on a printed circuit board. The light source, the inverter, the lens array and the printed circuit board are supported by a single case of the image reading apparatus.
Abstract:
In a contact type image sensor having a sensor array mounting photosensors, a focussing unit for focussing light from an original upon the photosensors, and a frame for holding in position the sensor-array and focussing unit, the focussing unit abuts on the sensor array. In a contact type image sensor having a sensor array having a plurality of face-down sensor chips with a plurality of pixels mounted on a transparent substrate in line, a rod lens array for focussing light from an original, a light source for illuminating the original, and a frame for holding in position the sensor array, rod lens array, the transparent substrate is covered with a light shielding layer in an area other than an area on which the pixels of the sensor chips are mounted and an area corresponding to a focussing area of the rod lens array.
Abstract:
A lens array unit includes first and second lens arrays cooperative with each other. The first lens array is provided with a plurality of first convex lenses and a first transparent holder formed integral with the first lenses. Each of the first lenses has first and second lens surfaces. The second lens array is provided with a plurality of second convex lenses and a second transparent holder formed integral with the second lenses Each of the second lenses has third and fourth lens surfaces. The second lens array is attached to the first lens array so that the third lens surfaces face the second lens surfaces. The lens array unit further includes a light shield mounted on the first lens array. The light shield is formed with a plurality of through-holes each facing the relevant one of the first lens surfaces.
Abstract:
An image reading apparatus includes a housing provided with a light passage, a transparent plate mounted on the housing, a light source for emitting light into the light passage, a lens array facing the image reading section on the transparent plate, a plurality of light-receiving elements arranged in an array extending in a primary scanning direction, and a light reflector formed on the transparent plate. The light reflector is offset from the image reading section in the secondary scanning direction, which is perpendicular to the primary scanning direction.
Abstract:
A rod lens array, used in an image sensor, is configured by sandwiching a plurality of rod lenses with two side plates. Among the two side plates, the one which is on the side of the illumination device is made thinner than the other side plate.
Abstract:
For preventing occurrence of interference fringes derived from interference of light rays on a contact plane between a contact glass and a cover glass, and thus homogenizing an output wave that may otherwise undergo the adverse effect of interference fringes, a close-contact type image sensor includes a contact glass arranged to come into contact with a read surface of an original, a light source for irradiating light to the read surface, an image forming lens for converging light reflected from the read surface, an image sensor part for reading an image of the original formed on an image plane of the image forming lens, and a cover glass for fixing the light source and the image forming lens at respective predetermined positions in a housing, wherein an air layer is present between the contact glass and the cover glass.
Abstract:
A sheet with a thickness .DELTA.x is attached on a surface of a plate glass in an image reading area, against which a subject-sheet is pressed, so that an air layer of thickness .DELTA.x can be formed between the surface of the plate glass and a surface of the subject-sheet at the opposite side. The thickness .DELTA.x is determined to reduce the effects of an optical interference of the illumination light from a light emitting diode. The sheet has an uneven surface in order to decrease an area where the sheet is in contact with the subject-sheet, thus reducing the adhesion between the sheet and the subject-sheet. A member with a low coefficient of friction is used as the sheet.