Abstract:
A method and an encoder are adapted to determine one or more parameters, each parameter being related to a type of vibration for the encoder. The encoder is mounted on an axis and arranged to detect rotary movement of the axis.
Abstract:
A strain sensor apparatus for a rotatable shaft including an emitter/receiver, a vibration element attached to the shaft and arranged for receiving and reflecting signals to and from the emitter/receiver wherein the vibration element includes asymmetric stiffness properties between a radial and axial and/or circumferential directions relative to a rotational axis of the shaft.
Abstract:
In a piezoelectric vibration type force sensor according to the present invention, vibration is restricted by a friction force between a piezoelectric body and a restricting member, and hence a range of sensing forces can be expanded compared with a case in which the vibration is restricted directly from a direction that is the same as an vibration direction. A conventional structure, in which a lead wire is soldered directly for electrically connecting the piezoelectric body to an external control circuit, causes a restriction of the vibration due to a solder attached to the piezoelectric body, resulting in narrowing the sensing range. Using the piezoelectric vibration type force sensor, the range of sensing forces can be expanded by making a state in which conducting portions of the piezoelectric body and the restricting member are not fixed but contact with each other for keeping electric conductivity.
Abstract:
A device for recognizing bearing damage of a bearing (3), on which an object (4) which rotates at a rotational frequency is mounted, having at least one oscillation sensor (2) for converting an oscillation signal output by the bearing (3) into an electrical signal and having a calculation unit (8) for performing a first frequency transformation for multiple time windows of the oscillation signal to generate multiple time window spectra associated with the particular time windows and for performing a second frequency transformation for multiple frequency bands of the time window spectrograms to generate a multiband modulation spectrum, which, for modulation frequencies which are a function of the rotational frequency of the rotating object (4) because of bearing damage of the bearing (3), have signal amplitudes, the level thereof disclosing an extent of the bearing damage.
Abstract:
A system and method for performing side impact sensing in a vehicle including at least one side impact zone is provided. The system comprises a controller and at least one crash signature sensor. The controller is configured to deploy one or more safety restraints in response to at least one crash signature signal. The one crash signature sensor is positioned in the side impact zone. The crash signature sensor is configured to detect an impact with an object at the side impact zone. The crash signature sensor is further configured to generate the crash signature signal which corresponds to measured structural impact energy of the vehicle in the side impact zone deformed by the impact at frequencies above 2 kHz.
Abstract:
A method for measuring a tangential tightness of a stator coil within an armature slot of a stator assembly in an electric generator. The stator coil is excited to produce a vibratory response therein. The vibratory response of the stator coil is detected and a frequency response function of the vibratory response is determined. A tangential tightness of the stator coil within the armature slot is estimated based on the frequency response function of the vibratory response of the stator coil.
Abstract:
A high frequency flexure-based dynamometer for measuring vibrations to use in determining cutting forces in a tool is disclosed. The dynamometer device may operate within a pre-selected high frequency range while measuring cutting forces less than about 1 N. The dynamometer may include two coupled flexures that interact to produce vibration modes at the edge of a selected bandwidth of interest. These modes may produce a frequency response function within the desired frequency band that has a magnified response and is substantially constant. The dynamometer may include a workpiece mounted to one of the two flexures and a one or more precision accelerometers mounted to the first or second flexures. Finite element analysis may be used to optimize the flexure design.
Abstract:
Method and arrangement for taking up a first medium, which is present in a first phase, into a capillary deviceIn the capillary device, a reduced pressure is produced which is less than a critical pressure such that, if it is exerted in the capillary device, a surface tension which is produced by the first medium in the capillary device, when the first medium has been taken up fully by the capillary device, would be overcome so that a second medium which is present in a second phase, different from the first phase, would be taken up into the capillary device.
Abstract:
A feedback-controlled force measuring apparatus with a force input element, a piezoelectric force generating element and a precision motion detection element in a feedback-controlled loop. Two embodiments are described. In one the force-generating element is a supported proof mass to sense linear acceleration, and in the other the force-generating element is a diaphragm supported to sense external pressure. The precision motion detection element employs resistance and inductance of a case-fixed coil of wire modulated by the distance from the coil to an electrically-conductive member connected to a force-generating element. The piezoelectric force generating element may be either a bimorph, or a piezoelectric stack.
Abstract:
Accelerometer micromachined in a plane plate comprising a base, and at least one measurement cell including a moveable seismic mass connected to the base and capable of moving translationally along the sensitive y axis of the accelerometer under the effect of an acceleration γ along this y axis, a resonator cell that comprises a resonator that can vibrate and be subjected to a tensile or compressive force depending on the direction of the acceleration γ and is placed symmetrically with respect to an axis of symmetry S of the structure, this axis S being parallel to the y axis and passing through the center of gravity of the seismic mass, the measurement cell furthermore including amplification means for amplifying the acceleration force, which means comprise at least one anchoring foot for anchoring to the base, two rigid terminations of the resonator cell and two pairs of micromachined arms symmetrical with respect to the axis S, each pair comprising a first arm connecting a termination to the seismic mass, and a second arm connecting the same termination to the anchoring foot, the angle α between the Ox axis and the first arm being small enough for the tensile or compressive force exerted on the resonator to be greater than the acceleration force exerted on the seismic mass.