Abstract:
Embodiments of the present disclosure are directed to a sensor without a traditional substrate. In the disclosed embodiments, a substrate may be omitted and the sensor may be mounted on, and/or incorporated into, a functional element of an electronic device such as a cover glass for a touch screen or a display of a computing device. As a substrate may be used during formation of the sensor, the substrate on which the sensor is actually mounted on during use can be configured to have certain properties or characteristics, such as transparency, a certain thickness, and the like. In other words, the parameters of the substrate used to mount the sensor may not be constrained by the requirements of the manufacturing process of the sensor.
Abstract:
Electronic devices may be provided that contain flexible displays and internal components. An internal component may be positioned under the flexible display. The internal component may be an output device such as a speaker that transmits sound through the flexible display or an actuator that deforms the display in a way that is sensed by a user. The internal component may also be a microphone or pressure sensor that receives sound or pressure information through the flexible display. Structural components may be used to permanently or temporarily deform the flexible display to provide tactile feedback to a user of the device.
Abstract:
Predicting likely fingerprint information (most likely finger, orientation, or otherwise), responsive to situational information or spatial orientation, for matching with a function button. The device determines first, second, and further likely choices. Responsive to display orientation and an accelerometer, the device determines whether the function button is on the right or left. Responsive to recent movement, the device determines the user's most likely hand movements. Responsive to a lifetime average, situational information, or accessories coupled to the device, the device determines the user's most likely finger choice. Responsive to most likely choice, the device can de-crypt match information while collecting fingerprints.
Abstract:
An apparatus comprises a fingerprint sensor having a set of capacitive elements configured for capacitively coupling to a user fingerprint. The fingerprint sensor may be disposed under a control button or display element of an electronic device, for example one or more of a control button and a display component. A responsive element is responsive to proximity of the user fingerprint, for example one or both of a first circuit responsive to motion of the control button, and a second circuit responsive to a coupling between the fingerprint and a surface of the display element. The fingerprint sensor is disposed closer to the fingerprint than the responsive element. The control button or display component may include an anisotropic dielectric material, for example sapphire.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
A consumer electronic product includes at least a transparent housing and a flexible display assembly enclosed within the transparent housing. In the described embodiment, the flexible display assembly is configured to present visual content at any portion of the transparent housing.
Abstract:
This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.
Abstract:
An electronic device may have a flexible display. The electronic device may have housing portions that are rotatably coupled to each other so that the flexible display may fold along one or more bend axes. A device may have rollers that store a flexible display and that help deploy the display from within a housing when additional display area is desired. A touch screen in a housing may be overlapped by a flexible display that has been scrolled outwardly from the housing. Wireless transmitter and receiver circuitry may be used to convey image data to display driver circuitry. The display driver circuitry may display images on a pixel array in a flexible display based on the image data. Magnets may be used to outwardly bias edge-mounted bistable support structures to help prevent a rolled flexible display from wrinkling.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.