Abstract:
Systems and method for improving design and/or operation of a radio frequency system are provided. One embodiment provides a radio frequency system, which includes a first look-up table that describes a static reference value, association between a maximum output power and a first specification level, and association between a first back off value and a second specification level, in which the first back off value is defined in relation to the static reference value and used to determine a first reduced output power; and a second look-up table that describes association between the maximum output power and a first set of operational parameters and association between the first reduced output power and a second set of operational parameters. The radio frequency system wirelessly transmits the analog electrical signal in compliance with an instructed specification level instruction by determining a desired output power based on the instructed specification level using the first look-up table and implementing operational parameters determined based on the desired output power using the second look-up table.
Abstract:
A method for controlling transmission power in accordance with a total transmission power limit in a multi-radio wireless communication device including a master radio and a slave radio is provided. The method can include the wireless communication device determining, at the master radio, a transmission power of the master radio. The method can further include the wireless communication device providing information indicative of the transmission power of the master radio from the master radio to the slave radio. The method can additionally include determining, at the slave radio, an allowable transmission power for the slave radio. A sum of the allowable transmission power and the transmission power of the master radio may not exceed the total transmission power limit.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An electronic device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing from conductive housing structures, printed circuit boards, and other conductive elements. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The radio-frequency transceiver circuitry may implement receiver diversity using both the upper and lower antennas. The lower antenna may be used in transmitting signals. The upper antenna may be tuned using a tunable matching circuit.