Abstract:
A method and apparatus of image data compression and decompression are disclosed. According to an embodiment of the present invention, the compression method partitions the image data into access units and encodes each access unit into a bitstream according to a target bit budget. Each access unit is encoded using first data compression to generate a first bitstream and the residual data is further encoded using second data compression to generate a second bitstream if the first bitstream is smaller than the target bit budget. In one example, the second data compression comprises bit plane coding applied to bit plane-ordered data, wherein the bit plane-ordered data is generated by scanning from a most significant bit to a least significant bit of the residual data in a bit plane-wise order. The decompression method comprises steps to recover reconstructed data from the first and second bitstreams.
Abstract:
A preview system of an image capture apparatus has a processing circuit and a display apparatus. The processing circuit reads an input image, scales at least a portion of the input image to generate a first preview image, and derives a second preview image from a selected portion of the input image. The display apparatus displays the first preview image and the second preview image, concurrently. Besides, a preview method for an image capture apparatus includes at least the following steps: reading an input image; scaling at least a portion of the input image to generate a first preview image; deriving a second preview image from a selected portion of the input image; and displaying the first preview image and the second preview image on a display apparatus, concurrently.
Abstract:
A HDR tone mapping system includes several modules. A semantic segmentation module is used to extract semantic information from the input image. An image decomposition module is used to decompose the input image to a high-bit base layer and a detail layer. A statistics module is used to generate statistics of pixels of the input image according to the semantic information. A curve computation module is used to generate a tone curve from the statistics. A compression module is used to compress the high-bit base layer to a low-bit base layer according to the tone curve, the statistics and the semantic information. A detail adjustment module is used to tune the detail layer according to the semantic information and the statistics to generate an adjusted detail layer. An image reconstruction module is used to combine the adjusted detail layer and the low-bit base layer to generate an output image.
Abstract:
An image calibration method is applied to an image calibration device includes an image receiver and an operation processor. The image calibration method of providing a motion deblur function includes driving a first camera to capture a first image having a first exposure time, driving a second camera disposed adjacent to the first camera to capture a second image having a second exposure time different from and at least partly overlapped with the first exposure time, and fusing a first feature of the first image and a second feature of the second image to generate a fusion image.
Abstract:
Various schemes pertaining to generating an output image using hybrid motion-compensated fusion techniques are described. An apparatus receives multi-frame data comprising a plurality of images consecutively captured. The apparatus subsequently generates a first intermediate image and a second intermediate image by performing temporal fusion on a first part and a second part of the multi-frame data, respectively. The apparatus further generates the output image using motion-compensated fusion based on the first and second intermediate images. The apparatus provides benefits of efficiently reducing noise and blurriness in the output image.
Abstract:
An image signal amplifying circuit comprising an amplifier and a gain control circuit. The amplifier respectively amplifies a first image signal and a second image signal, which are generated by a pixel array of an image sensor, by a first analog gain and a second analog gain, wherein each one of pixel circuits of the pixel array comprises a first capacitor for generating the first image signal and a second capacitor for generating the second image signal, wherein a charge storage capacity of the first capacitor is smaller than a charge storage capacity of the second capacitor. The gain control circuit selectively adjusts the first analog gain or the second analog gain. Each one of the pixel circuits has a first conversion gain corresponding to the first capacitor and a second conversion gain corresponding to the second capacitor.
Abstract:
A processor or control circuit of an apparatus receives data of an image based on sensing by one or more image sensors. The processor or control circuit also detects a region of interest (ROI) in the image. The processor or control circuit then adaptively controls a light projector with respect to projecting light toward the ROI.
Abstract:
Various schemes pertaining to generating a full-frame color image using a hybrid sensor are described. An apparatus receives sensor data from the hybrid sensor, wherein the sensor data includes partial-frame chromatic data of a plurality of chromatic channels and partial-frame color-insensitive data. The apparatus subsequently generates full-frame color-insensitive data based on the partial-frame color-insensitive data. The apparatus subsequently generates the full-frame color image based on the full-frame color-insensitive data and the partial-frame chromatic data. The apparatus provides benefits of enhancing image quality of the full-frame color image especially under low light conditions.
Abstract:
A perception-based image processing apparatus includes an image analyzing circuit and an application circuit. The image analyzing circuit obtains training data, sets a perception model according to the training data, performs an object detection of at least one frame, and generates an object detection information signal based at least partly on a result of the object detection of said at least one frame. The application circuit operates in response to the object detection information signal.
Abstract:
Various examples with respect to adaptive infrared (IR) projection control for depth estimation in computer vision are described. A processor or control circuit of an apparatus receives data of an image based on sensing by one or more image sensors. The processor or control circuit also detects a region of interest (ROI) in the image. The processor or control circuit then adaptively controls a light projector with respect to projecting light toward the ROI.