Abstract:
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube having an interior side surface and defining a central longitudinal axis; a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber is contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. The side heater assembly is disposed adjacent the interior side surface and electrically connects the end heater assemblies with each other. Each end heater assembly has a respective peripheral side disposed adjacent the interior side surface Heat is produced in the chamber in response to an electric current flowing through the end and side heater assemblies. At least a proximate side heater barrier spaces apart the side heater assembly from at least the proximate end heater assembly, adjacent its peripheral side, operative to prevent a portion of the side heater assembly from intruding between the peripheral side of the proximate end heater assembly and the containment tube and short-circuiting at least part of the proximate end heater assembly, when the end heater assemblies move towards each other in response to a force applied by the ultra-high pressure furnace onto the capsule assembly along the central longitudinal axis.
Abstract:
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube defining a central longitudinal axis, a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber and the side heater assembly are contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. Each end heater assembly comprises a respective conduction volume forming a respective electrical path through the end heat assembly. The side heater assembly electrically connects the respective conducting volumes to each other, and heat is produced in the chamber in response to an electric current flowing through the side heater assembly and the conducting volumes. At least the proximate end heater assembly comprises a first insulation component including an outer insulation volume. The conducting volume of at least the proximate end heater assembly includes an inner conducting volume, and the inner conducting volume is laterally spaced apart from the containment tube by the outer insulation volume.
Abstract:
A pressure booster having two cylinders with two pistons, connected such that they operate simultaneously, which can be mounted in a multi-chamber containing simple pressure boosters nested that can be used to increase the pressure depending on the simple boosters being used is provided.
Abstract:
HPHT press system includes a thermal insulation layer. The thermal insulation layer includes CsCl, CsBr, CsI, or a combination thereof, and the thermal insulation layer is electrically insulating. The thermal insulation layer may include a thermal insulation sleeve and/or a thermal insulation button for an HPHT cell.
Abstract:
Methods of forming polycrystalline diamond compacts include employing field assisted sintering techniques with high temperature and high pressure sintering techniques. For example, a particle mixture that includes diamond particles may be sintered by subjecting the particle mixture to a high temperature and high pressure sintering cycle, and pulsing direct electrical current through the particle mixture during at least a portion of the high temperature and high pressure sintering cycle. The polycrystalline diamond compacts may be used to form cutting elements for earth-boring tools. Sintering systems are configured to perform such sintering processes.
Abstract:
A polycrystalline diamond (PCD) compact and method for making the compact are provided. The method includes bringing a first PCD wafer and a second PCD wafer together at an interface in the presence of a bonding agent to form an unbonded assembly and bonding the wafers together at the interface at a pressure and temperature at which diamond is thermodynamically stable. The first PCD wafer is more thermally stable than the second PCD wafer.
Abstract:
Methods of forming polycrystalline diamond compacts include employing field assisted sintering techniques with high temperature and high pressure sintering techniques. For example, a particle mixture that includes diamond particles may be sintered by subjecting the particle mixture to a high temperature and high pressure sintering cycle, and pulsing direct electrical current through the particle mixture during at least a portion of the high temperature and high pressure sintering cycle. The polycrystalline diamond compacts may be used to form cutting elements for earth-boring tools. Sintering systems are configured to perform such sintering processes.
Abstract:
Large-scale manufacturing of gallium nitride boules using m-plane or wedge-shaped seed crystals can be accomplished using ammonothermal growth methods. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and crystals are grown ammonothermally. The orientation of the m-plane or wedge-shaped seed crystals are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus.
Abstract:
A method for large-scale manufacturing of gallium nitride boules. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and grown ammonothermally. The seed orientation and mounting geometry are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus. The method is scalable up to very large volumes and is cost effective.
Abstract:
The present invention relates to a method for producing diamond-metal composites including mixing diamond particles with metal-filler particles forming a diamond/metal-filler mixture, forming a green body of the diamond/metal-filler mixture, optionally green machining the green body to a work piece before or after pre-sintering by heating the green body to a temperature