Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
The invention provides a composition comprising core-shell nanoparticles, the nanoparticles comprising (a) cationic core material comprising latex; and (b) shell material comprising metal oxide.
Abstract:
The invention provides a composition comprising core-shell nanoparticles, the nanoparticles comprising (a) cationic core material comprising polymer; and (b) a shell material comprising silica. Preferred core materials comprise diblock copolymer micelles comprising one block of dialkylaminoethyl methacrylate units which are partially or fully quaternised and one block of dialkylaminoethyl methacrylate units that remain non-quaternised. The invention also provides a method for the preparation of the said composition, the method involving (a) preparing a cationic core material comprising polymer; and (b) coating the core material with a shell comprising silica by treating the polymer with a silica precursor under ambient conditions. The invention also envisages a composition comprising core-shell nanoparticles which is adapted to facilitate controlled delivery of at least one active agent into a system in response to controlled changes in the pH of the system.
Abstract:
An aluminum salt-containing resin powder of the present invention includes: at lest one matrix resin component selected from regenerated collagen, polyvinyl alcohol and carboxymethyl cellulose; and an aluminum salt. The aluminum salt is chemically bonded to the matrix resin component, and the resultant is powdered. A resin composition of the present invention includes 0.1 wt % or more and 80 wt % or less of the aluminum salt-containing resin powder and 20 wt % or more and 99.9 wt % or less of a resin other than the aluminum salt-containing resin. Thus, the present invention provides an aluminum salt-containing resin powder having a high phosphorus adsorption property, a high antibacterial property and a high antifungal property, and a resin composition containing the aluminum salt-containing resin powder.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
The present invention relates to the foams of the polyvinyl chloride nanocomposites comprising of polyvinyl chloride, layered inorganic compounds, and foaming agents. They are effective in that they have superior mechanical strength and non-flammability even with a low specific gravity; demostrates a high foaming efficiency even with a small amount of a foaming agent; and have an even microcellular structure.
Abstract:
An electrically conductive film is disclosed. According to one embodiment of the present invention, the film includes a plurality of single-walled nanotubes having a particular diameter. The disclosed film demonstrates excellent conductivity and transparency. Methods of preparing the film as well as methods of its use are also disclosed herein.
Abstract:
An ethylene-vinyl alcohol copolymer (EVOH) composition comprises 100 parts by weight of a powder (A) having a particle size of from 22 to 850 μm of an ethylene-vinyl alcohol copolymer (a) which has an ethylene content of from 2 to 60 mol % and has a degree of saponification greater than 95%, and from 0.0001 to 2 parts by weight of inorganic particles (B) having primary particles with a mean particle size of from 1 to 100 nm. The EVOH powder coating composition of the present invention forms a coating film having good uniformity when applied to a substrate as powder coating, even when it contains 1 part by weight or more water relative to 100 parts by weight of EVOH resin.
Abstract:
An ethylene-vinyl alcohol copolymer (EVOH) composition comprises 100 parts by weight of a powder (A) having a particle size of from 22 to 850 μm of an ethylene-vinyl alcohol copolymer (a) which has an ethylene content of from 2 to 60 mol % and has a degree of saponification greater than 95%, and from 0.0001 to 2 parts by weight of inorganic particles (B) having primary particles with a mean particle size of from 1 to 100 nm. The EVOH powder coating composition of the present invention forms a coating film having good uniformity when applied to a substrate as powder coating, even when it contains 1 part by weight or more water relative to 100 parts by weight of EVOH resin.
Abstract:
An improved material for use in resilient conforming pads, cushions, impact resistance padding and the like is described. The material comprises hollow coated micro particles cohered to a mass by a combination of a carboxylic acid bonding agent and a hydrophobic fluid. The material is useful for providing low weight contour conforming resilient padding for garments, athletic equipment, prosthetic devices, surgical or vehicular cushions, positioning devices, mattresses impact protective padding and the like.