Abstract:
The present invention relates to a display device comprising an outer display stacked with an inner display and being arranged to be operable in a first, multiple view mode and a second, single view mode. An idea of the invention is to arrange an electrophoretic display on top of an emissive display. The display device may be operated in two modes; a first mode being a multiple or dual view mode and a second mode being a single view mode. In order to activate the single view mode, the outer display is set in a transparent state and the inner display is turned on, such that it displays desired objects. In the multiple view mode, the outer display is functioning as a 3D-barrier. Hence, some of the picture elements of the outer display are set in a transparent state while others are set in an opaque state. The viewer sees a different picture with each respective eye, and will accordingly experience a multiple view picture of an object that is displayed on the inner display.
Abstract:
An exemplary liquid crystal panel includes a first substrate, a second substrate parallel to the first substrate, and a liquid crystal layer between the first substrate and the second substrate. The second substrate includes color units and OLED units provided at substantially a same layer thereat, and the OLED units and the color units are alternately arranged. An LCD including the liquid crystal panel is also provided.
Abstract:
A display includes a display surface, an electroluminescent panel, which has a plurality of electroluminescent elements, and a liquid crystal panel, which has a plurality of liquid crystal elements. The liquid crystal panel and the electroluminescent panel overlaps each other in the front and rear direction of the display. The electroluminescent elements and the liquid crystal elements are aligned with each other in the front and rear direction of the display. In the display, at least one of the electroluminescent elements and the liquid crystal elements function as pixels to show an image on the display surface. Therefore, the display can show an image in the appropriate manner in accordance with an environment.
Abstract:
An emissive-reflective display and method thereof is proposed for different prior art display technologies. The self-emissive component and the reflective component of the present invention are processed individually, and a simply paste method (such as roll-to-roll pressing or adding rubber materials) is utilized to finish the emissive-reflective display. The method of the present invention can improve the overall process yield.
Abstract:
A display device comprising a light source and having an optical waveguide, a louver, an anisotropic scattering sheet, and a transmissive liquid crystal panel disposed along the path of light emitted from the light source. The light-restricting direction of the louver is tilted at an angle α from the Y-axis direction. The value of the angle α is set so that the arrangement direction of moiré created between the louver and the liquid crystal panel approaches the X-axis direction. A plurality of belt-shaped convex portions extending in the Y-axis direction are formed on the surface of the anisotropic scattering sheet, and are configured so that the scattering direction of the light has anisotropy. Specifically, scattering in the X-axis direction is increased, and scattering in the Y-axis direction is reduced. Moiré can thereby be reduced in a display device having increased directivity of the display.
Abstract:
An electrochromic window assembly is disclosed that includes a first substrate and a second substrate that is maintained in a parallel and spaced relation from the first substrate by means of a window frame and spacer. The window assembly further includes an electrochromic device mounted within the airtight chamber formed between the first and second substrates. Electrochromic device 22 may be mounted so as to provide an air chamber between first substrate 12, which is the external substrate, and electrochromic device 22. At least one of the chambers formed between substrates 12 and 14 and electrochromic device 22 may be filled with an insulating gas such as argon. Also disclosed are novel methods for manufacture of an electrochromic device for incorporation into such a window assembly. A novel electrochromic device is also disclosed having electrical bus clips secured about the entire periphery of the electrochromic device.
Abstract:
A display system and method provides images viewable within an electrically controllable viewing window for controlled viewing by the driver and passenger in a vehicle. The display system includes a display for generating an image that is viewable within a viewing window, and a backlight disposed behind the display for generating light for illuminating the display. The display system has a light control medium for controlling directivity of the light illuminated on the display. The display system further has a control device for controlling the light control medium to change the viewing window to control images for viewing by the driver to reduce distraction thereof.
Abstract:
An electrophoretic display comprises a fluid and a plurality of nanoparticles having diameters substantially less the wavelengths of visible light such that, when the nanoparticles are in a dispersed state and uniformly dispersed throughout the fluid, the fluid presents a first optical characteristic, but when the nanoparticles are in an aggregated state in which they are gathered into aggregates substantially larger than the individual nanoparticles, the fluid presents a second optical characteristic different from the first optical characteristic. The electrophoretic display further comprises at least one electrode arranged to apply an electric field to the nanoparticle-containing fluid and thereby move the nanoparticles between their dispersed and aggregated states. Various compound particles comprising multiple nanoparticles, alone or in combination with larger objects, and processes for the preparation of such compound particles, are also described.
Abstract:
A composite liquid crystal electroluminescent electro-optical display device utilizing single-cell construction. Backlighting is furnished by a low-intensity, low-power-consumption integrally formed electroluminescent light source cooperating with a liquid crystal element with commonly excited electrodes. The integral electro-luminescent light source replaces the requirement for a transflector. The invention offers substantially improved contrast while minimizing physical size, power dissipation and construction complexity.
Abstract:
An operation method of electronic device, comprising providing a first panel, wherein the first panel comprises first substrate, first medium layer disposed on the first substrate, a first electrode layer disposed between the first substrate and the first medium layer, and a second electrode layer disposed between the first electrode layer and the first medium layer; providing a second panel overlapped with the first panel, providing an adhesive layer, wherein the first panel is attached to the second panel through the adhesive layer, and the first panel and the second panel present a mirror-symmetrical structure with the adhesive layer as the axis of symmetry; applying a first voltage to the first electrode layer; applying a second voltage to the second electrode layer; applying a third voltage to the first electrode layer.