Abstract:
A failure analysis system includes a controller A that sends a control command A, a looped interface A, the controller A being selectively connectable to the looped interface A, a node device A that is selectively connectable to the looped interface A, a node device B that is selectively connectable to the looped interface A, and an enclosure service device A that receives the control command A via the node device A. If a failure occurs, the enclosure service device A disconnects the node device B from the looped interface A, and one of: maintains the node device A connected to the looped interface A, and disconnects and subsequently re-connects the node device A to the looped interface A.
Abstract:
Systems and methods for maintaining cache coherency between a first controller and a redundant peer controller while reducing communication overhead processing involved in the coherency message exchange. Header or meta-data information is accumulated in a buffer in a first controller along with updated cache data (if any) and forwarded to the peer controller. The accumulating information may be double buffered so that a buffer is filling as a previously filled buffer is transmitting to the peer controller. The peer controller processes the received information to update its mirror cache to maintain coherency with the first controller's cache memory with respect to dirty data. The method and systems avoid the need to update cache coherency in response to every flush operation performed within the first controller to thereby improve overall system performance.
Abstract:
This invention relates to a disk array controller. There has been demand for a large scale memory device system operable without interruption. Further, in order to cope with the recent trend toward open systems, scalability of performance and capacity in such systems is needed.Conventionally, internal buses such as ones which connect the channel interface section to the shared memory section, and the disk interface section to the shared memory section, have been mounted on one platter, and the channel interface and other packages have been mounted thereon. If the internal buses have failed, the operation of the whole system must be stopped. There has been another problem that the performance of the internal buses is fixed.A disk array controller according to this invention comprises an interface platter on which a channel interface section and a disk interface section are mounted, a memory platter on which a shared memory section is mounted, and a cable which connects the interface platter to the memory platter in order to solve the above problems.
Abstract:
A method and an apparatus for providing multiple ports to a single port device are provided. According to the present invention, single port devices that are incapable of communicating across a shared communication bus, and therefore require a point to point communication channel, may be interconnected to multiple hosts using a switch assembly. The switch assembly selectively establishes a communication path between a single host and a device. Additionally, the present invention provides a method and apparatus by which computer subsystems, such as RAID storage subsystems, may be implemented using inexpensive storage devices. Furthermore, the present invention provides a method and apparatus for providing a high reliability computer subsystem by configuring the subsystem such that no single active component failure will result in the failure of the entire subsystem.
Abstract:
A computer system may include one or more hosts and a plurality of data storage devices for providing multihop system calls. The data storage devices are interconnected and also connected to the one or more hosts. Each data storage device classifies a data operation as a system call, a remote system call, or a multihop system call. Also described is a multipath multihop system call in which one or more communication paths may be selected using predetermined and/or dynamic communication path selection techniques. The number of communication paths determined may be in accordance with parameters that are included in a multipath multihop system call, tunable system parameters, or a combination of the foregoing.
Abstract:
Disclosed is a disk array system that can be expanded effectively in scale by increasing the number of input/output channels and disk adapters and improved in such performance as the number of input/output operations per second, data transfer rate. The disk array system is provided with input/output channels to be coupled to a host computer, cache memories coupled to each of input/output channels respectively and used to store input/output data temporarily, disk drives, disk adapters coupled to the disk drives, and network switches used to couple the input/output channels to the disk adapters.
Abstract:
A storage system has a plurality of control modules for controlling a plurality of storage devices, which make mounting easier with maintaining low latency response even if the number of control modules increases. A plurality of storage devices are connected to the second interface of each control module using back end routers, so that redundancy for all the control modules to access all the storage devices is maintained. Also the control modules and the first switch units are connected by a serial bus, which has a small number of signals, constituting the interface by using the back panel. By this, mounting on the printed circuit board becomes possible.
Abstract:
The present invention prompts path switching in accordance with the state of occurrence of intermittent failures, and prevents the responsiveness of a storage system from declining, or the like. Here, it is supposed, for example, that a host 1 is performing data communications with a storage device 2 by means of the path P1, and that an intermittent failure such as a communications time-out has occurred in path P1 on a number of occasions equal to or exceeding the prescribed threshold value. In this case, the controller 3 sends back a hardware error response in reply to an access from the host 1. Upon receiving a hardware error response from the storage device 2, the path control section 1B switches from the path P1 where the intermittent failure was detected (the original path) to a path P2 that is functioning normally (the target path), and then re-attempts the access command. In this way, it is possible to prompt the host 1 to switch the communications path in accordance with the state of occurrence of an intermittent failure, and therefore the responsiveness of the storage device 2 can be maintained.
Abstract:
A system and method for automatic failure recovery in a storage system that includes replicating data stored in a first storage volume at a storage system into a second storage volume at the storage system, the first storage volume handling Input/Output (I/O) operations between the storage system and a host device. A failure is detected in the I/O operations with the first storage volume and a recovery process initiated that includes identifying a path from the host device to the second storage volume or a third storage volume to allow continuation of the I/O operations automatically. The third storage volume containing data recovered from the second storage volume.
Abstract:
Disclosed herewith is a scalable disk array controller inter-connection network to be employed for a disk array system in which a plurality of disk array controllers connected to each another are expected to be operated as one disk array controller. The inter-connection network enables such disk array controllers to be added/removed without service interruption while the system reliability is kept as is. Each of the plurality of disk array controllers comprises a channel IF unit; a disk IF unit; a cache memory unit; a shared memory unit; means for connecting the channel IF unit/disk IF unit and the cache memory unit; and means for connecting the channel IF unit/disk IF unit and the shared memory unit. The inter-connection network comprises a plurality of switches to be increased in a scalable manner. Each of the switches is inter-connected with other switches with use of a redundant path having a separated physical route. In addition, each of the switches has an output destination table used to set redundant paths and switches between paths after the inter-connection network is modified due to the addition/removal of the above switches. The disk array controller becomes cost-scalable because the disk array controller units can be added/removed to/from the system as required without service interruption while the system reliability is kept as is.