Abstract:
A scanning method in which a scanning head moves back and forth to scan a paper sheet located in a scanning window is disclosed. The method of the present invention includes the steps of a) making the paper sheet go forward a first distance into the scanning window; b) the scanning head scanning a portion of the paper sheet; c) the transmission mechanism driving the scanning head to move a second distance in a first direction, wherein the second distance is smaller than the first distance; d) repeating the steps b) and c) until the scanning head completely scans a plurality of portions of the paper sheet in the scanning region; e) repeating the steps a), b), c) and d), except that the scanning head moves in a second direction opposite to the first; f) repeating the steps a), b), c), d), and e), the movement of the scanning head alternating between a first and second direction, until the scanning head completely scans the paper sheet to be scanned.
Abstract:
The image recording method and image recording apparatus synchronize phase of a light deflector with rotation of a drum in response to the drum start point detection signal generated each time the drum rotates once, expose the two-dimensional image of one frame formed by a group of light sources disposed two-dimensionally onto the recording medium while causing the image at rest on the recording medium relatively thereto, thereafter move the optical system in the auxiliary scanning direction by an integral multiple of a pixel pitch forming one frame as well as deflect an angle of the light deflector in the main scanning direction by one frame so as to expose the next frame and on for one rotation of the drum. When the position is dislocated in the auxiliary scanning direction at the time the recording medium is to be exposed in a subsequent one rotation of the drum, the method and apparatus correct the dislocation of the position in the auxiliary scanning direction by changing an auxiliary scanning movement speed in a non-exposure time zone between the previous and subsequent rotations of the drum. Accordingly, the method and apparatus can prevent the occurrence of streaked unevenness in the surface exposure and spiral exposure.
Abstract:
A method for processing partial lines of image data from a detector, each partial line of data representing a portion of an image pixel matrix, includes: (a) communicating partial lines of image data over a network from an imaging system to a remote facility; (b) receiving partial lines of image data in a first sequence; (c) assigning to each partial line of image data in a first series a position in a second sequence by reference to a plurality of base addresses; (d) altering the base addresses; and (e) assigning to each partial line of image data in a second series a position in the second sequence by reference to the altered base addresses.
Abstract:
The image recording method and apparatus focus or image a two-dimensional image formed by a group of two-dimensionally disposed light source elements through an optical system on a recording medium which is moving in a relative relation to the group two-dimensionally disposed light source elements. The method and apparatus deflect light from the group of two-dimensionally disposed light source elements to move the image focused on the recording medium in synchronism with a movement of the recording medium such that the image can remain stationary at least in a main scanning direction in a relative relation to the recording medium. The group of two-dimensionally disposed light source elements can be produced by a two-dimensional spatial light modulator illuminated with an illumination light flux.
Abstract:
An improved high resolution scanner for use in a conventional scanner housing. A light receiving guide transversely moves a conventional lens and CCD for scanning portions of an object to be scanned. The resulting scanned portions, when combined, produce a high resolution image of the scanned image.
Abstract:
A device is described for exposing both sides of a light sensitive sheet such as a printed circuit board panel according to imaging data. The device comprises an optical system for scanning the sensitive sheet by one or more beams. The optical system scans both sides with the scan lines on one side mutually positioned with respect to the scan lines on the other side. According to one implementation, the optical system includes two optical scanning units driven by a single source, with a switch alternating the beam from the source to one then the other optical scanning unit.
Abstract:
An image capturing apparatus for capturing a sequence of subsections of a flat field subject image. The image capturing apparatus includes a camera assembly, preferably including a digital camera, and a lighting assembly. The image capturing apparatus further includes an image positioning jig for moving the subject image to a series of predetermined positions relative to the camera assembly for the capture of the subsections of the subject image by the camera. The image positioning jig includes a backing plate for supporting the subject image in an image plane, and a positioning rail for abutting an edge of the subject image for slidable movement along the X-axis of the image plane. A plurality of rail locators are arranged on the backing plate for attaching the positioning rail to the backing plate at predetermined positions along the Y-axis of the image plane. A plurality of image stops are disposed on the backing plate for positioning the image at predetermined locations along the X-axis of the image plane.
Abstract:
An image processing apparatus includes an imaging lens, an area image sensor having solid-state imaging elements arranged in a planar manner, and an imaging device for converting an image of an imaging object read by the area image sensor into image information. The imaging device is switchable between an electronic camera function mode and image scanner function mode. When the device is switched into the electronic camera function mode, the image information for one frame is outputted, whereas when the imaging device is switched into the image scanner function mode, the image information derived when an object to be read is manually scanned by the area image sensor in response to a moving amount of the manual scanning operation is outputted as continuous image information. Image information may thus be acquired over a wide range by employing a single image information processing apparatus.
Abstract:
An image processing apparatus includes a joining-portion processing section for combining partial images that have been read in a divided manner. Focused on partial document data predeterminately specified among a plurality of partial document data stored in an image memory, the joint-portion processing section performs a recognizing operation on the joints, a positioning operation and other operations beginning with the proximity of the specified partial document data. The partial images are then combined together to form one complete image. For example, in the case of copying an original document, which is of a size too large to be copied in one operation, on one sheet of paper in a reduced manner, it becomes possible to eliminate time consuming tasks such as trimming and pasting of the partial documents as well as calculating of the reduction rate. Thus, the efficiency of the operation is improved, and by specifying the partial document data from which the operation is started, it is possible to join the partial images accurately irrespective of the order of inputting the partial documents.
Abstract:
An image processing apparatus includes a joining-portion processing section for combining partial images that have been read in a divided manner. Focused on partial document data predeterminately specified among a plurality of partial document data stored in an image memory, the joint-portion processing section performs a recognizing operation on the joints, a positioning operation and other operations beginning with the proximity of the specified partial document data. The partial images are then combined together to form one complete image. For example, in the case of copying an original document, which is of a size too large to be copied in One operation, on one sheet of paper in a reduced manner, it becomes possible to eliminate time consuming tasks such as trimming and pasting of the partial documents as well as calculating of the reduction rate. Thus, the efficiency of the operation is improved, and by specifying the partial document data from which the operation is started, it is possible to join the partial images accurately irrespective of the order of inputting the partial documents.