Abstract:
An endoscopic tissue grasper device includes a flexible tubular member, a flexible shaft extending through the tubular member, a proximal handle for moving the shaft and tubular member relative to each other, and a distal helical coil having a sharpened end for engaging tissue. The tissue grasper is advanced through a working channel of an endoscope, engaged relative to tissue, and retracted to pull tissue into a path of a movable needle coupled at a distal end of the endoscope so that the needle can be passed through the tissue. The needle is preferably provided with a suture so that as the needle is passed through the tissue a stitch is formed.
Abstract:
Method and apparatus for disrupting a gastric vagal nerve in the gastroesophageal region and testing the function and disruption of the vagal nerve. In one example embodiment, a treatment device applies ultrasound at a high energy level, such as high intensity focused ultrasound, to a vagal nerve to disrupt it and then ultrasound at a lower energy level to another portion of the vagal nerve, preferably further from the stomach, so as to stimulate the vagal nerve. Alternative ways to test the function or disruption of the vagal nerve involve using PCP-GABA, a pancreatic polypeptide, pressure changes inside the stomach, the gastric mucusol pH, a dye agent in the stomach, and other tests.
Abstract:
An quantitative ZAP-70 assay is provided, with ZAP-70+ and ZAP-70− controls, normal human blood controls, an improved antibody with better signal to noise ratio, and using the median MEFL that is calibrated using a standard curve.
Abstract:
Instruments and methods are provided for performing submucosal medical procedures in a desired area of the digestive tract using endoscopy. The instruments include a mucosal resection device, a tissue grasper and a snare. Systems include a combination of one or more of such instruments. Embodiments of various methods for performing the procedures are also provided.
Abstract:
A method of binding a stack of papers having a plurality of holes with a binding element having a plurality of fingers insertable in the holes. The method includes clamping the stack of papers with a paper clamp; moving at least one of the paper clamp and a binding element applicator relative to the other; and binding the stack of papers with a binding element held by the binding element applicator by operating the binding element applicator to insert the fingers of the binding element into holes of the stack of papers.
Abstract:
An apparatus for punching and binding a stack of papers is disclosed. The apparatus includes a paper clamp and a binding element insertion device that are movable relative to each other. The binding element insertion device is configured to receive and detect binding elements of different sizes. The apparatus also includes a punching mechanism, a controller, and a user interface. The controller controls movement of the paper clamp and the binding element insertion device based on the size of the binding element needed to bind the stack of papers together. The user interface is configured to provide information to a user of the apparatus and to receive input from the user before, during, and after the punching and binding operation.
Abstract:
A sawing apparatus and a saw fence. The saw apparatus may include a work surface. The saw may include a rail system disposed along the edges of the work surface, for the attachment of accessories thereto. The saw may be provided with workpiece guide adapted to be attached to the rail system for guiding workpieces during the operation of the saw. The workpiece guide may also be provided with an infeed extension that rides on the rail system and is capable of supporting workpieces during the operation of the saw. The infeed extension may be adjustable relative to the work surface of the saw. The saw may further be provided with a debris collection system for the collection of debris produced by the cutting operations of the saw.
Abstract:
An apparatus for punching and binding a stack of papers is disclosed. The apparatus includes a paper clamp and a binding element insertion device that are movable relative to each other. The binding element insertion device is configured to receive and detect binding elements of different sizes. The apparatus also includes a punching mechanism, a controller, and a user interface. The controller controls movement of the paper clamp and the binding element insertion device based on the size of the binding element needed to bind the stack of papers together. The user interface is configured to provide information to a user of the apparatus and to receive input from the user before, during, and after the punching and binding operation.
Abstract:
A disposable stethoscope cover that covers at least the surface of the diaphragm is disclosed. The cover contacts a patient during use and reduces transmittal of microorganisms. The cover is in the form of a flexible sheet having a top and a bottom surface. The sheet has an adhesive material on a portion of the surface thereof that secures the sheet to the surface of the diaphragm. The sheet further includes at least one wing extending from the sheet. The wing has an adhesive on at least one surface thereof for securing the wing to the sheet when the wing is folded over at least a portion of a tube section of the stethoscope.