Abstract:
The present invention provides analogs of benzoquinone-containing ansamycins and uses thereof for treating and modulating disorders associated with hyperproliferation, such as cancer. The present invention provides analogs of benzoquinone-containing ansamycins where the benzoquinone is reduced to a hydroquinone and trapped by reaction with a suitable acid, preferably ones that increase the solubility and air stability of the resulting 17-ammonium hydroquinone ansamycin analog.
Abstract:
A queuing mechanism is presented that allows port data and processor data to share the same crossbar data pathway without interference. An ingress memory subsystem is dividing into a plurality of virtual output queues according to the switch destination address of the data. Port data is assigned to the address of the physical destination port, while processor data is assigned to the address of one of the physical ports serviced by the processor. Different classes of service are maintained in the virtual output queues to distinguish between port data and processor data. This allows flow control to apply separately to these two classes of service, and also allows a traffic shaping algorithm to treat port data differently than processor data.
Abstract:
A routing module applies a plurality of routing rules simultaneously to determine routing for a Fibre Channel frame. Each rule independently determines whether the rule applies to the frame as well as a routing result for the frame. The routing result includes a port address, a zoning indicator, and a priority designation that can be used to route the frame over a virtual channel in an interswitch link. A selector chooses between the results returned by the rules. A component receives routing results specifying an ISL group and selects a physical ISL for the frame. An in-band priority determined by the content of the frame header can also be used in place of the priority designation in the routing result.
Abstract:
A control panel assembly including at least one moveable button defining an outer surface. The control panel assembly also includes an electroluminescent film operatively supported on the outer surface of the button such that the electroluminescent film is adapted for selectively emitting light from the outer surface of the button. A method for making the control panel assembly is also disclosed.
Abstract:
A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The robotic arm may contain a passive joint that provides an additional degree of freedom. Additionally, the system may include a disconnect input device that decouples the arm from an input device such as the handles.
Abstract:
A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms/instruments.
Abstract:
A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms/instruments.
Abstract:
A method and apparatus for estimating the orbits of spacecraft or other objects relative to primary celestial bodies, given applicable measurements. The present invention uses the variation of parameters in universal variables for spacecraft trajectory propagation during operation of its optimal sequential orbit estimation. This method provides a universal capability for all three conics: elliptic, parabolic, and hyperbolic, forward-time and backward-time numerical integration for filtering and smoothing, respectively. A method for determining local and global estimates of atmospheric density is also provided. A method for realistic orbit simulation provides a means for validating an orbit estimate.
Abstract:
A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site. A cardiac procedure can be performed by making small incisions in the patient's skin and inserting the instruments and endoscope into the patient. The surgeon manipulates the handles and moves the end effectors to perform a cardiac procedure such as a coronary artery bypass graft.
Abstract:
An interface that allows a surgeon to remotely control surgical devices and conditions of an operation room. The surgeon views a video image that is displayed by a monitor. The monitor may be coupled to a video device such as a laparoscopic camera that is attached to the end of an endoscope. Static graphic images and a dynamic graphic cursor are overlayed onto the video image. The graphic cursor has a pixel location on the monitor which corresponds to a spatial location of a pointer signal. The pointer signal is transmitted by a transmitter worn on the head of the surgeon. The pointer signal may be a laser which is directed to a screen that is located adjacent to a detection camera. The surgeon may move the graphic cursor relative to the video image by tilting his head and varying the spatial location of the pointer signal. The interface may have a controller which generates output signals in response to the movement of the pointer signal. The output signals may move a robotic arm which controls the position of the endoscope. The controller may also generate command signals when the graphic cursor is moved into a static graphic image. The command may vary a condition of the operating room such as the position of the operating table.