Abstract:
A liquid crystal display device includes a pair of substrates, a liquid crystal between substrates and alignment layers disposed on the inner surface sides of the substrates. The alignment layer is made from a material including polyamic acid containing a diamine component and polyimide containing a diamine component different from the diamine component of the polyamic acid. The alignment layer is subjected to alignment treatment by irradiation of light. UV light can be irradiated in the oblique direction onto the alignment layer through a mask having openings. A reflecting plate can be arranged between a UV light source and the mask. Also, bank structures having a thickness from 0.1 to 0.15 μm can be provided on the alignment layer of the TFT substrate.
Abstract:
A display panel (50a) includes a TFT substrate (20a) in which a plurality of TFTs (5a) are provided, a counter substrate (30a) provided to face the TFT substrate (20a), and a display medium layer (40) provided between the TFT substrate (20a) and the counter substrate (30a), a plurality of pixels being provided so that each of the plurality of pixels is associated with a corresponding one of the TFTs (5a), wherein an oxide semiconductor layer (13) is provided in each of the TFTs (5a) as a channel, and an ultraviolet light absorbing layer (22) having a light transmitting property is provided in each of the pixels (P) so as to overlap the oxide semiconductor layer (13).
Abstract:
Electronic devices may be provided with displays having polarizer structures. Polarizer structures may incorporate flexible layers of glass. The flexible glass layers may be laminated to other sheets of material in the polarizer structures using roll-to-roll lamination equipment. After the polarizer structures are cut into panels, the panels may be laminated to liquid crystal display structures, organic light-emitting-diode display structures or other display structures using sheet-to-sheet lamination tools. Ultraviolet-light-blocking material may be incorporated into a display to prevent damage to the polarizer layers in the polarizer structures. Coatings such as antireflection coatings, antistatic coating, and anti-smudge coatings may be provided on the polarizer structures. Displays may use the flexible glass layers and additional protective layers to prevent a polarizer layer from being exposed to excessive moisture. A birefringent layer may be incorporated into a display and may serve as a protective layer for a polarizer.
Abstract:
An optical plate includes a planar base and a plurality of rounded prisms formed on the planar base. The rounded prisms improve a uniformity of the light passing through the planar base and then irradiate the light having the improved uniformity. A concave peak formed in each of the plurality of rounded prisms of the optical plate scatters the light provided into a rear face of the optical plate so that dark lines and bright lines are not generated on the optical plate. As a result, the optical plate has improved light efficiency.
Abstract:
In the step of curing a resin for bonding a TFT substrate and a counter substrate each having an alignment film that has been optically aligned by using UV-light, damage to the alignment film due to the UV-light can be prevented without using a light shielding mask.A UV-light absorption layer is formed between each black matrix on the counter substrate. The TFT and counter substrates are sealed at their periphery by a resin that is cured by UV-light radiated from the counter substrate side. Since the absorption layer has a high absorbability to UV-light at a wavelength of 300 nm or less that degrades the alignment film, damage to the alignment film due to the UV-light for curing the resin can be prevented. Thus, provision of a light shielding mask for shielding the UV-light for the display region can be saved.
Abstract:
A liquid crystal display device includes an illuminator and a liquid crystal panel for performing displaying by using light which is emitted from the illuminator. The liquid crystal panel includes a pair of substrates and a liquid crystal layer provided therebetween. The liquid crystal layer is formed of a liquid crystal material which contains molecules having at least one of a carbon-carbon triple bond and a polycyclic group. The illuminator includes a light source causing primary generation of at least blue light, among other light which is used for displaying.
Abstract:
Certain example embodiments of this invention relate to ruggedized switchable glazings, and/or methods of making the same. The PDLC stack of certain example embodiments includes an outer substrate, a low-E UV blocking coating deposited on an inner surface of the outer substrate, a first PVB or EVA laminate, a first PET layer, a first TCO layer, the PDLC layer, a second TCO layer, a second PET layer, a second PVB or EVA laminate, and an inner substrate. The substrates may be glass substrates. The low-E UV blocking coating may include at least two layers of or including silver and/or may include one or more IR layers. Thus, certain example embodiments may advantageously reduce one or more problems associated with residual haze, color change, flicker, structural changes in the polymer and/or the LC, degradations in state-switching response times, delamination, etc. The PDLC stack of certain example embodiments may be used in connection with any form of coated article, such as, for example, windows, windshields, IG units, etc.
Abstract:
An ultraviolet-absorbing layer is provided between an insulating substrate and a transparent electrode, the ultraviolet-absorbing layer having a transmittance ratio (T (365 nm)/T (315 nm)) of not less than 6.3 where (T (365 nm)) is a transmittance at a wavelength of 365 nm and (T (315 nm)) is a transmittance at a wavelength of 315 nm.
Abstract:
A liquid crystal display device includes a pair of substrates, a liquid crystal between substrates and alignment layers disposed on the inner surface sides of the substrates. The alignment layer is made from a material including polyamic acid containing a diamine component and polyimide containing a diamine component different from the diamine component of the polyamic acid. The alignment layer is subjected to alignment treatment by irradiation of light. UV light can be irradiated in the oblique direction onto the alignment layer through a mask having openings. A reflecting plate can be arranged between a UV light source and the mask. Also, bank structures having a thickness from 0.1 to 0.15 μm can be provided on the alignment layer of the TFT substrate.
Abstract:
A liquid crystal display panel includes an array substrate and at least a conducting wire. The conducting wire, disposed in a peripheral region of the array substrate, includes a first straight section, and a second straight section structurally connected to the first straight section. At least one side of the first straight section is arranged along a first direction, and at least a side of the second straight section is arranged along a second direction, where the first direction and the second direction are non-parallel. The first straight section includes a plurality of first slits arranged along the first direction, and the second straight section includes a plurality of second slits arranged along the second direction.