Abstract:
A method for manufacturing microcapsules is provided. The microcapsules each include an electrophoretic dispersion liquid containing at least one type of electrophoretic particles in a dispersion medium, and a capsule body made of an organic polymer and containing the electrophoretic dispersion liquid. The method includes forming droplets of the electrophoretic dispersion liquid by dispersing the electrophoretic dispersion liquid in an polar dispersion medium, and forming the capsule bodies by mixing a polymerization initiator and a polymerizable surfactant having a hydrophilic group, a hydrophobic group and a polymerizable group with the polar dispersion medium so as to coat the droplets with the polymerizable surfactant and induce a polymerization reaction to form the organic polymer.
Abstract:
The invention relates to an optical component including an array of coupled waveguides, wherein said waveguide array includes: a first area made of parallel waveguides coupled according to a first coupling coefficient; a second area adjacent to the first area and made of parallel waveguides coupled according to a second coupling coefficient lower than the first coupling coefficient; a third area adjacent to the second area and made of parallel waveguides coupled according to a third coupling coefficient higher than the second coupling coefficient; a fourth area adjacent to the third area and made of parallel waveguides coupled according to a fourth coupling coefficient lower than the third coupling coefficient; and a fifth area adjacent to the fourth area and made of parallel waveguides coupled according to a fifth coupling coefficient higher than the fourth coupling coefficient.
Abstract:
An optical waveguide device includes: a substrate having an electro-optical effect; an optical waveguide formed on the substrate; and a control electrode for applying an electric field to the optical waveguide. The optical waveguide device has the following characteristics. A thickness of the substrate is 30 μm or less. The control electrode has a signal electrode and a ground electrode. A low-permittivity layer is formed at least on a surface portion of the signal electrode in contact with the substrate.
Abstract:
The focal distance can be greatly changed by performing an electrical control in an optical element. The optical element comprises a first substrate having a first electrode, a second substrate, a second electrode arranged outside the second substrate, and a liquid crystal layer provided between the first substrate and the second substrate and constituted by liquid crystal molecules oriented. A first voltage is applied between the first electrode and the second electrode, thereby controlling the orientation of the liquid crystal molecules, whereby the optical element operates. A third electrode is provided on an insulating layer and outside the second electrode. A second voltage independent of the first voltage is applied to the third electrode, thereby changing the optical properties.
Abstract:
An absorption modulator is provided. The absorption modulator includes a substrate, an insulation layer disposed on the substrate, and a waveguide having a P-I-N diode structure on the insulation layer. Absorptance of an intrinsic region in the P-I-N diode structure is varied when modulating light inputted to the waveguide. The absorption modulator obtains the improved characteristics, such as high speed, low power consumption, and small size, because it greatly reduces the cross-sectional area of the P-I-N diode structure.
Abstract:
In an optical modulator comprising substrate 1 having electro-optical effect, two optical waveguides 3a, 3b formed in the substrate, buffer layer 2 formed on the substrate, traveling-wave electrode 4 having center conductor 4a and ground conductors 4b, 4c above the buffer layer, and ridge sections formed with recessed sections 9a to 9c by carving at least a part of the substrate where an electrical field strength of high-frequency electrical signal propagating the traveling-wave electrode is strong, in which the ridge sections include center conductor ridge section 8a having the center conductor formed above and ground conductor ridge section 8b having the ground conductor formed above, and the center conductor ridge section has one of the two optical waveguides formed therein, the recessed sections are practically symmetrical to the center line between the two optical waveguides and the traveling-wave electrode is practically symmetrical to the center line of the center conductor.
Abstract:
An electronic display comprises an electro-optic material (preferably an electrophoretic medium) having a plurality of pixels, and separate first, second and third sets of addressing means for addressing these pixels. Each of the pixels is associated with one addressing means in each of the three sets, such that addressing of any specific pixel requires application of signals within predetermined ranges to each of the three addressing means associated with the specific pixel being addressed. The display may be in the form of a multi-page electronic book.
Abstract:
The present invention provides a TBA-mode transflective liquid crystal display device in which components such as a multigap structure and a quarter-wave plate can be omitted. The liquid crystal display device includes: a first substrate and a second substrate that are disposed opposite each other; and a liquid crystal layer that is interposed between the first substrate and the second substrate, and having, in a pixel area, a reflective area where reflective display is performed and a transmissive area where transmissive display is performed, wherein the first substrate has a first electrode provided in the transmissive area and the reflective area, a second electrode provided in the transmissive area and disposed parallel to and opposite the first electrode inside the pixel area, and a third electrode provided in the reflective area and disposed parallel to and opposite the first electrode inside the pixel area, the liquid crystal layer includes a p-type nematic liquid crystal and is driven by an electric field generated at least one of between the first electrode and the second electrode and between the first electrode and the third electrode, the p-type nematic liquid crystal is aligned perpendicular to the first substrate and the second substrate when no voltage is applied, a distance between the first electrode and the third electrode is different from a distance between the first electrode and the second electrode, and mutually different common signals are input to the second electrode and the third electrode.
Abstract:
A light control element is provided with a thin board having electro-optical effects; an optical waveguide formed on the thin board; and a control electrode for controlling light that passes through the optical waveguide. The light control element performs speed matching between a microwave signal applied to the control electrode and the light, impedance matching of the microwaves, reduction of a driving voltage and high speed operation. In the control electrode of the light control element, a signal electrode and a grounding electrode are arranged on an upper side of the thin board, and on a lower side of the thin board, a second electrode including the grounding electrode is arranged. The second electrode is arranged not to exist below the signal electrode, especially for achieving impedance matching.
Abstract:
In an optical waveguide device, in a cross direction intersecting an extension direction of waveguide sections, one or more bridge portions of a ground electrode closer to a center of stress distribution of a stress due to a support member, and one or more bridge portions of a ground electrode farther from the center of stress distribution are formed with different shapes. The structure of the ground electrodes is devised so that a stress negating the difference in stress characteristics between the plurality of waveguide sections, generated by the stress applied from the support member to a substrate, is applied from the ground electrode to the substrate.