Abstract:
A liquid crystal display device has a plurality of pixel electrodes arranged in a matrix, a plurality of TFTs connected to the pixel electrodes respectively, and a plurality of gate lines and data lines, on the inner surface of one substrate of a pair of substrates facing each other via a liquid crystal layer. A first opposing electrode for forming, between itself and the plurality of pixel electrodes, a vertical electric field parallel with the direction of a normal line of the substrates, and a second opposing electrode for forming, between itself and the plurality of pixel electrodes, an oblique electric field obliquely inclined from the direction of the normal line are formed on the inner surface of the other substrate.
Abstract:
A liquid crystal display (LCD) device includes a gate line and a data line defining a unit pixel. A thin film transistor (TFT) is connected to the gate line and the data line. A common electrode and a pixel electrode is connected to the TFT. The pixel electrode includes a plurality of shaped slits exposing the common electrode. One or more of the slits include at least one curved end or shaped in the form of two curvilinear sides joined to form pointed ends defined by a predetermined acute angle. A middle portion of the unit pixel defines an axis of symmetry around which slits are symmetrically disposed in either a first domain or a second domain. A common line, electrically connected to the common electrode, may define the axis of symmetry. The LCD device can reduce disclination line generation and can provide improved brightness, contrast ratio and image quality.
Abstract:
A display device includes an insulated substrate, a thin film transistor formed over the insulated substrate, and first and second electrodes formed over the insulated substrate. A first insulating layer is formed over the insulated substrate, the first electrode, and the second electrode, and third and fourth electrodes are formed over the first insulating layer. A second insulating layer is formed over the first insulating layer, the third electrode, and the fourth electrode, and a fifth electrode formed over the second insulating layer, and a contact hole is formed in the first insulating layer and the second insulating layer. The fifth electrode is connected to the second electrode via the fourth electrode in the contact hole.
Abstract:
Disclosed is a fringe field switching mode transflective liquid crystal display capable of displaying high quality images. The transflective liquid crystal display includes a lower substrate having a counter electrode and a pixel electrode, an upper substrate aligned in opposition to the lower substrate by interposing a liquid crystal layer therebetween, an upper polarizing plate, a lower polarizing plate, a reflective plate provided at an inner portion of the lower substrate, a lower λ/2 plate, and an upper λ/2 plate. An inclination angle, a slit width and a slit interval of the pixel electrode of the reflective area are different from those of the pixel electrode of the transmissive area. The liquid crystal layer presents a phase delay of about 0 to λ/4 in the reflective area and presents a phase delay of about 0 to λ/2 in the transmissive area.
Abstract:
The present invention provides a color transflective liquid crystal display that is capable of display with good coloring and high visibility in both a reflective mode and a transmissive mode while suppressing deterioration in color reproduction caused by unevenness of the spectral properties of the illumination light, if any. The liquid crystal display can include a liquid crystal display panel including pixels formed of a plurality of sub-pixels each corresponding to different colors, and an illumination device, wherein the liquid crystal display panel includes a transflective layer and a color filter of color corresponding to each of the sub-pixels. The transflective layer includes transmissive portions for transmitting illumination light, wherein the transmissive portion is formed such that the dimension of the transmissive area corresponding to the transmissive portion of at least one sub-pixel out of the plurality of sub-pixels and the dimension of the transmissive area corresponding to the transmissive portion of another sub-pixel, differ.
Abstract:
A liquid crystal display device has an opposing substrate on which an opposing electrode is formed, a TFT substrate on which pixel electrodes arranged in matrix, thin film transistors connected to the pixel electrodes respectively, and gate lines and data lines for the thin film transistors are formed, vertical alignment films formed on the opposing inner surfaces of these substrates, and a liquid crystal layer disposed between the vertical alignment films and having negative dielectric anisotropy. Each pixel electrode has a slit formed for separating each pixel into a plurality of sub-pixels by partially eliminating the pixel electrode with a connecting portion left at which adjoining electrode portions of each pixel electrode is connected with each other. The width W1 of the pixel electrode that runs in a direction in which the slit is formed and width W2 of the connecting portion have a ratio W2/W1 of 0.13 or lower.
Abstract:
Structures, devices, systems and methods of using multi-domain vertical alignment liquid crystal displays with high transmittance, high contrast ratio and wide view angle in which at least one of the electrode substrates has circular or ring-shaped openings, such as holes or slits. Circular or ring-shaped patterns for openings and electrodes have not been used in the construction of a liquid crystal display. The new multi-domain vertical alignment (MDVA) liquid crystal display is particularly suitable for liquid crystal display television and computer monitor applications.
Abstract:
The present invention provides an optical device. In one embodiment, the optical device includes an optical waveguide formed in or over a ridge located on a substrate. The optical device also includes a microstrip transmission line comprising a signal electrode and a ground electrode adjacent the ridge and a low-k dielectric material separating the signal and ground electrodes. The present invention also provides a method for making the optical device.
Abstract:
Optical devices, are provided, having a first conductive layer, an optical layer, arranged over the first conductive layer, and a second conductive layer, arranged over a portion of the optical layer, in accordance with a predetermined pattern. The optical layer is transparent to at least a wavelength of interest and has an index of refraction, which is a function of a variable, substantially reversible, dopant concentration or dopant concentration gradient in it. By applying an electric potential between the first and second conductive layers, a change in the index of refraction is formed within the optical layer, between the portion abut with the predetermined pattern and the remainder of the optical layer. Additionally, the present invention provides optical devices formed as stacks of layered constructions, each layered construction comprising a first conductive layer, an optical layer, arranged over the first conductive layer, and a second conductive layer, arranged over the optical layer, these layered constructions being operable as tunable interference filters.
Abstract:
An array substrate for use in an in-plane switching liquid crystal display device includes a plurality of gate lines disposed in a first direction on a substrate; a plurality of data lines disposed in a second direction aslant the gate lines, wherein the gate and data lines have rounded portions and pairs of the gate and data lines define circular pixel regions; a common line disposed in the first direction between the pair of the gate lines; a circular common electrode connected to the common line; a thin film transistor disposed near each crossing of the gate and data lines; and a circular pixel electrode disposed in the circular pixel region, connected to the thin film transistor, and spaced apart from the circular common electrode.