Abstract:
Techniques are disclosed for position-based actions using light-based communication (LCom). LCom signals can be used to encode or otherwise provide data which in turn can be used to help determine the position of a device receiving those LCom signals. Therefore, LCom can be used to facilitate various actions based on, for example, the position of an LCom receiver determined using data received via the LCom signals. There are numerous use cases for position-based actions using LCom, such as security applications, check-in applications, payments based on location, permissions, and access to information that can all be tied to a location. Actions may include temporarily disabling or enabling the LCom receiver hardware or software (such as disabling device cameras in high security areas), providing another security layer as a result of knowing the device position, and using the LCom receiver position as a part of a larger process.
Abstract:
A controlling device such as a remote control has programming for transmitting a signal response to a plurality of control environments, each environment including a signaling device. Each signaling device in receipt of the signal request sends a signal response having a unique ID which is chosen to be characteristically attenuated by the surroundings of the environment. Because the controlling device can only be in one environment at a given time, and given the attenuation characteristics of the signal response from each signaling device, only one signal response will be received by the controlling device in each environment. Location definitions associated with the received unique ID may be used by programming in the controlling device to recall saved devices states, commands sets, macros, and even to dynamically generate commands based on the location information.
Abstract:
A method of selecting and controlling devices based on wireless communication technology. The wireless controller sends a probe message to one or more devices; each device receives the probe message, obtains information in respect of its relative position with respect to the wireless controller, determines a response time to respond according to a first predefined rule, based on its relative position information: detects response signals from other devices before expiration of the response time; decides whether to send or not to send its response signal according to a second predefined rule and the detecting procedure of response signals from other devices; the wireless controller receives response signals sent by the devices after the comparison of the relative position information of each device with respect to the wireless controller, and selects the target devices from the devices. Embodiments of the present invention reduce the complexity, delay and energy consumption of the selection for wireless devices, and are especially applicable for wireless lighting systems.
Abstract:
Methods and systems are described for communicating messages using a home automation system. An example computer-implemented method for communicating based on geo location information using an automation and security system includes determining a geo location of a person relative to a property being monitored by the automation and security system, and automatically delivering a message to the person based on the geo location.
Abstract:
A user equipment (UE) device pointed at an appliance to be controlled, or at an object that is to be accessed or about which information needs to retrieved, determines its position and orientation within an environment with respect to a fixed frame of reference. The appliance to be controlled is identified based on a determined position and orientation of the UE device and a known position of the appliance. The UE device controls the identified appliance by establishing a wireless communication link between the identified appliance and UE device based on a wireless technology that is compliant with both the appliance and the UE device. The UE device may control another appliance via a central control computer server to which the other appliance is interfaced, when the other appliance is not configured for wireless communication.
Abstract:
A user equipment (UE) device pointed at an appliance to be controlled, or at an object that is to be accessed or about which information needs to retrieved, determines its position and orientation within an environment with respect to a fixed frame of reference. The appliance to be controlled is identified based on a determined position and orientation of the UE device and a known position of the appliance. The UE device controls the identified appliance by establishing a wireless communication link between the identified appliance and UE device based on a wireless technology that is compliant with both the appliance and the UE device. The UE device may control another appliance via a central control computer server to which the other appliance is interfaced, when the other appliance is not configured for wireless communication.
Abstract:
The present invention relates to a cooking apparatus and method for cooking a food item using a cooking apparatus, the method characterised by the steps of: using transmission means of a remote computing device to send cooking control data to receiving means of the cooking apparatus when the transmission means is positioned near or adjacent to the receiving means, and operating a processor means of the cooking apparatus to process the cooking control data when received to perform a cooking process to cook a food item placed in a cooking cavity of the cooking apparatus. The present invention provides an oven that receives cooking control data or information from a remote mobile computing device, such as a smart phone or other portable hand-held, device. The cooking control data is processed by the cooking apparatus for the purposes of setting cooking instructions specific to the food item to be cooked.
Abstract:
A remote control device (100) for controlling lighting systems includes a sensor (155) configured to determine a location of the remote control device (100) in relation to the lighting systems (115). A controller (145) is configured to determine a nearest light source (120) of the lighting systems (115) relative to the location of the remote control device (100) and to control this nearest light source (120). The controller (145) is configured to change a configuration of the remote control device (100) in response to changing its location. A transceiver (105) transmit a signal to multiple light sources (120) which measure the strength and/or time of flight of this signal for use in determining the location of the remote control device (100). The light sources (120) provide the remote control device (100) with identifying information unique to each one of them including their locations.
Abstract:
In one embodiment, location aware operation is provided using Bluetooth positioning. A Bluetooth-enabled handheld device is operated within a structure. Received Bluetooth signal strengths are measured for a plurality of Bluetooth-enabled transmitter/receiver units dispersed within the structure, where respective ones of the plurality of Bluetooth-enabled transmitter/receiver units are located on separate floors, in separate rooms, or in different portions of a same room. Based on the received Bluetooth signal strengths, a single Bluetooth-enabled transmitter/receiver unit is selected. A location of the selected Bluetooth-enabled transmitter/receiver unit is assigned to the Bluetooth-enabled handheld device. A first electronic device is controlled based on the assigned location. In response to movement by a user of the Bluetooth-enabled handheld device within the structure, a location of a different Bluetooth-enabled transmitter/receiver unit is reassigned to the Bluetooth-enabled handheld device. A second electronic device is controlled based on the reassigned location.
Abstract:
A trainable transceiver having an integrated interface connections with various vehicle modules for use with various remote electronic devices and a method of programming and using the same. The wireless trainable transceiver is in a vehicle with an integrated interface allowing connection to a human to machine interface and vehicle position determination device, such a navigation system and compass and the wireless trainable transceiver has the ability to change functions associated with preset buttons on the trainable transceiver, depending upon the location of the vehicle.