Abstract:
A motor driving system includes a power supply, a driver, a motor, and a control unit. The driver includes a driving module and a power converting module. The driving module is connected to the power supply. The power converting module is connected to the power supply. The motor includes a power terminal connected to the power converting module. The control unit is connected to the power converting module. The power supply is configured to provide power for the driver. The driving module is configured to control the motor. The control unit is configured to control the power converting module to output a changeable voltage to the motor.
Abstract:
A motor control apparatus for an electric vehicle has an AC motor system including a power conversion unit and a motor/generator. The power conversion unit performs conversion between DC power and AC power to drive the motor/generator. The motor control apparatus further includes a decoupling control section configured to perform decoupling control, which restricts interference between system voltage control and motor torque control, by correcting a control state amount of one of the system voltage control and the motor torque control by a control state amount of the other of the system voltage control and the motor torque control.
Abstract:
In a drive system of an AC motor in which a motor current is feedback-controlled, a motor current command is produced in a normal operation according to a torque command value on an optimum efficiency characteristic line so as to select an optimum current phase maximizing an output torque with a constant motor current amplitude. Conversely, when the AC motor produces an excessively generated power exceeding a regeneratable power quantity of the AC motor, a consuming operation is performed for intentionally increasing the power loss in the AC motor. In the consuming operation, the motor current command is produced according to the torque command value on a loss increase characteristic line to change the current phase from the above optimum value. Thereby, the power loss in the AC motor can be increased to consume the surplus power without causing instability in the motor control.
Abstract:
A boost converter boosts a DC voltage of a DC power supply. An inverter converts the output voltage of the boost converter into an AC voltage. An AC motor is driven by the output voltage of the inverter. A control device which controls the boost converter reduces an output voltage instruction value of the boost converter in the case where the rotation speed of the AC motor is decreased and an absolute value of a variation rate of the rotation speed is not less than a predetermined value. The inverter is controlled in the control mode selected from a plurality of control modes including three modes of a sine wave PWM control mode, an overmodulation PWM control mode and a rectangular wave control mode. The control device of the boost converter reduces the output voltage instruction value of the boost converter only in the case where the control mode of the inverter is the rectangular wave control mode or the overmodulation control mode.
Abstract:
A circuit for boosting the voltage output of an alternator utilizes the armature coils of the alternator as part of the boost circuit. The circuit and methods utilizing this circuit can enable refined control strategies for operating a plurality of engine systems during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations.
Abstract:
A drive system for a motor having a rotor and a phase winding (a, b, c) comprises; a drive circuit including switch means associated with the winding a, b, c for varying the current passing through the winding; rotor position sensing means arranged to sense the position of the rotor; control means arranged to provide drive signals to control the switch means; a power input for connection to a power supply at a nominal voltage; and boost means in electric communication with the power input and power output, and controllable to boost the nominal voltage to a higher voltage for application to the winding.
Abstract:
The present invention is directed to a control strategy for operating a plurality of prime power sources during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations. The present invention is directed at a general control strategy for multi power plant systems where the power systems need not be of the same type or power rating and may even use different fuels. The invention is based on a common DC bus electrical architecture so that prime power sources need not be synchronized.
Abstract:
The present invention is directed to a means of boosting the voltage output of an alternator utilizing the armature coils of the alternator as part of the boost circuit. This invention can enable refined control strategies for operating a plurality of engine systems during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations.
Abstract:
A motor control apparatus includes a direct-current power source and an inverter circuit, which includes a switching element. The motor control apparatus receives a current command value in every control cycle and calculates a current deviation accumulated value by accumulating the current deviation between the received current command value and the actual current value that flows through a coil of a motor. The motor control apparatus then computes a voltage command value in accordance with the current deviation accumulated value and controls the switching timing of the switching element based on the voltage command value. The motor control apparatus judges whether the computed voltage command value exceeds a range of the voltage that can be output from the inverter circuit and causes saturation. If it is judged that the voltage command value is saturated, the motor control apparatus restricts the accumulation of the current deviation.
Abstract:
An electric motor drive controller for an electric vehicle driven by a motor with permanent excitation and powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a voltage control circuit connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential in one operating mode and at a voltage potential greater than the first voltage potential in another operating mode; and a mode controller for controlling the operating modes of the voltage control circuit based on properties of the drive signal.