Abstract:
The invention concerns a method for estimating an external force acting on an electrohydrostatic actuator, the actuator comprising a ram including a first chamber, a second chamber and a piston located between the first chamber and the second chamber, a pump capable of injecting fluid into the chambers for controlling a movement of the piston, and an electric motor driving the pump, the method comprising steps of: estimating, by means of at least one state observer (21, 22), a dynamic component and a static component of a difference in equivalent fluid pressure between the first chamber and the second chamber from a rotational speed of the electric motor, a position of the piston and a supply current of the electric motor, estimating the external force by means of a post-processing module (23) as a combination of the estimated dynamic component and static component of the difference in fluid pressure.
Abstract:
A system for testing a pressure sensor of a seat includes a loading device and a processor. The loading device removably applies weight to the seat. The processor receives a measurement of a pre-installation pressure offset of a bladder of the pressure sensor measured before installation of the pressure sensing assembly into the seat. The processor is programmed to receive a weighted measurement from the pressure sensor in the seat when the loading device applies weight to the seat and an empty seat measurement from the pressure sensor in the seat when the loading device does not apply weight to the seat. The processor determines a threshold value by subtracting the empty seat measurement from the weighted measurement. The processor determines a seat pressure offset value by subtracting the pre-installation pressure offset value from the threshold value. The processor compares the seat pressure offset value to a selected range.
Abstract:
A controlled lean system for a tree feller-buncher includes a sensor configured to measure an orientation of a boom coupled to the tree feller-buncher, and a felling head operably connected to the boom. A controller is operable to detect a cut tree carried by the felling head and to estimate a quantity of tree lean needed to reduce torsional load during rotation of the boom while carrying the cut tree based at least in part on the measured orientation of the boom.
Abstract:
A bearing raceway ring (25) disposed near a mounting section (9) is disposed on the outer periphery of a circular cylinder section (19). A fluid-sealed chamber (40) in which a measurement liquid is hermetically enclosed is provided between a first member (8) and the bearing raceway ring (25) which is disposed near the mounting section (9). Pressure acting on the fluid to be measured changes as the bearing raceway ring (25) moves in the cylinder-axis direction, the bearing raceway ring (25) being disposed near the mounting section (9). The fluid-sealed chamber (40) is provided with a pressure sensor (44) capable of detecting a change in the pressure of the fluid to be measured.
Abstract:
The present invention relates to a method of determining the static force developed by a servo-control (10) having an actuator (20) and a hydraulic distributor control valve (30), with the actuator (20) including at least one cylinder (21) and a slidable element (25). The method comprises determining an instantaneous travel speed of the slidable element (25) relative to the cylinder (21) and determining the static force based at least in part on the instantaneous static force developed by the servo-control (10), the predetermined maximum static force, the instantaneous travel speed raised to the second power, and the maximum travel speed of the slidable element (25) relative to the cylinder (21) raised to the second power.
Abstract:
A device forming a pressure sensor is provided. The device includes: a substrate made of electrical insulation material including a first reservoir, a second reservoir in communication with the first reservoir and of which two internal walls are each equipped with an electrode, and a flexible membrane made of an electrical insulation material, including a protuberance and secured to the substrate so as to enable movement of the protuberance between a position in which it is at a distance from a liquid filling the first reservoir and at least one second position in which it exerts a pressure on the liquid, thus discharging it at least partially from the first reservoir toward the second reservoir with mechanical contact with the two electrodes, the mechanical contact of the liquid with the electrodes establishing a resistance or capacitance between the electrodes. Application in the production of a touch screen is also provided.
Abstract:
A reversible force measuring device that can comprise at least one cavity, at least one load receiving area, and at least one indicating material; wherein the indicating material moves in or out of the at least one cavity as its volume changes to indicate the magnitude and/or direction of the applied loads. A reversible force measuring device that can comprise at least one cavity, at least one load receiving area, and at least one indicating material; a fastener causes the indicating material to move in and out of the at least one cavity to indicate the magnitude and/or direction of the applied loads. A reversible force measuring device comprising at least two independent cavities, at least one load receiving area, and at least one indicating material; wherein the difference in volume changes indicates the force as the indicating material moves in or out of the at least two cavities.
Abstract:
A compliant tactile sensor may include sponge-like material, a flexible skin, and a fluid pressure sensor. The flexible skin may have a shape, absorb fluid, compress in response to force applied to the sponge-like material, and decompress and return to its original shape when the force is removed. The flexible skin may cover an outer surface of the sponge-like material. The fluid pressure sensor may sense changes in pressure in fluid that is within the sponge-like material caused by a force applied to the flexible skin.A robotic system may include a movable robotic arm, a compliant tactile sensor on the movable robotic arm that senses contact between the compliant tactile sensor and an object during movement of the movable robotic arm and that cushions the effect of that contact, and a reflex system that causes the moveable robotic arm to move in response to commands.
Abstract:
A device forming a pressure sensor is provided. The device includes: a substrate made of electrical insulation material including a first reservoir, a second reservoir in communication with the first reservoir and of which two internal walls are each equipped with an electrode, and a flexible membrane made of an electrical insulation material, including a protuberance and secured to the substrate so as to enable movement of the protuberance between a position in which it is at a distance from a liquid filling the first reservoir and at least one second position in which it exerts a pressure on the liquid, thus discharging it at least partially from the first reservoir toward the second reservoir with mechanical contact with the two electrodes, the mechanical contact of the liquid with the electrodes establishing a resistance or capacitance between the electrodes. Application in the production of a touch screen is also provided.
Abstract:
A presence sensor system includes at least one resilient extending member defining an enclosed sensing volume. The sensing volume includes a fluid therein. A pressure within the sensing volume changes upon application of force to the extending member. The presence sensor system further includes a pressure sensor in fluid connection with the sensing volume, a processor system in communicative connection with the pressure sensor and a communication system in communicative connection with the processor system. In a number of embodiments, the presence sensor system is adapted to determine a pressure threshold associated with onset of presence after being placed in use.