Abstract:
The problem of estimating the direction to one or more sound sources of interest relative to a user wearing a pair of hearing devices, e.g. hearing aids, is dealt with. A target signal is generated by a target signal source and transmitted through an acoustic channel to a microphone of a hearing system. Due to additive environmental noise, a noisy acoustic signal is received at the microphones of the hearing system. An essentially noise-free version of the target signal is transmitted to the hearing devices of the hearing system via a wireless connection. Each of the hearing devices comprises a signal processing unit comprising a sound propagation model of the acoustic propagation channel from the target sound source to the hearing device when worn by the user. The sound propagation model is configured to be used for estimating a direction-of-arrival of the target sound signal relative to the user.
Abstract:
The application relates to a binaural hearing assistance system comprising left and right hearing assistance devices, and a user interface, to its use and to a method. The left and right hearing assistance devices comprises a) at least two input units for providing a time-frequency representation of an input signal in a number of frequency bands and a number of time instances; and b) a multi-input unit noise reduction system comprising a multi-channel beamformer filtering unit operationally coupled to said at least two input units and configured to provide a beamformed signal. The binaural hearing assistance system is configured to allow a user to indicate a direction to or location of a target signal source relative to the user via said user interface. This has the advantage that interaural cues of the target signals can be maintained, while the ambient noise is reduced.
Abstract:
The application relates to a hearing system comprising a hearing device and a separate microphone unit adapted for picking up a voice of a user. The microphone unit comprises a) a multitude M of input units for picking up or receiving a signal representative of a sound from the environment, M being ≧2; b) an adaptive multi-input unit noise reduction system for providing an estimate Ŝ of a target signal s comprising the user's voice, the multi-input unit noise reduction system comprises a multi-input beamformer filtering unit configured to determine filter weights w(k,m) for providing a beamformed signal, wherein signal components from other directions than a direction of a target signal source are attenuated, whereas signal components from the direction of the target signal source are left un-attenuated; and c) antenna and transceiver circuitry for transmitting said estimate Ŝ of the user's voice to another device. The hearing system facilitates communication between a wearer of a hearing device and another person via a telephone. The invention may e.g. be used in hearing aids in connection with handsfree telephone systems, mobile telephones, teleconferencing systems, etc.
Abstract:
The present invention regards a hearing aid device at least one environment sound input, a wireless sound input, an output transducer, electric circuitry, a transmitter unit, and a dedicated beamformer-noise-reduction-system. The hearing aid device is configured to be worn in or at an ear of a user. The at least one environment sound input is configured to receive sound and to generate electrical sound signals representing sound. The wireless sound input is configured to receive wireless sound signals. The output transducer is configured to stimulate hearing of the hearing aid device user. The transmitter unit is configured to transmit signals representing sound and/or voice. The dedicated beamformer-noise-reduction-system is configured to retrieve a user voice signal representing the voice of a user from the electrical sound signals. The wireless sound input is configured to be wirelessly connected to a communication device and to receive wireless sound signals from the communication device. The transmitter unit is configured to be wirelessly connected to the communication device and to transmit the user voice signal to the communication device.
Abstract:
A method provides a long term feedback path estimate of a listening device. The method comprises a) providing an estimate of the current feedback path; b) providing a number of detectors of parameters or properties of the acoustic environment of the listening device and/or of a signal of the listening device, each detector providing one or more detector signals; c) providing a criterion for deciding whether an estimate of the current feedback path is reliable based on said detector signals; d) storing said estimate of the current feedback path, if said criterion IS fulfilled and neglecting said estimate of the current feedback path, if said criterion is NOT fulfilled; e) providing a long term estimate of the feedback path based on said stored estimate(s) of the current feedback path.