Abstract:
A control system, method and computer program product cooperate to assist control for an autonomous robot. The system includes a communications interface that exchanges information with the autonomous robot (22). A user interface displays a scene of location in which the autonomous robot (22) is positioned, and also receives an indication of a user selection of a user selected area within the scene. The communications interface transmits an indication of said user selected area to the autonomous robot (22) for further processing of the area by said autonomous robot (22).
Abstract:
Even when a first moving condition is not satisfied, when it is determined that a second moving condition is satisfied and at the same time an object belongs to a second classification, an operation of a robot is controlled so as to prompt the object to move according to a first pattern or an arbitrary pattern. The “first moving condition” is a condition that the robot is capable of moving without being obstructed by the object when the robot moves according to a current target position trajectory. The “second moving condition” is a condition that the robot is capable of moving according to the current target position trajectory without being obstructed by the object when the object is displaced according to the first pattern. The “second classification” means a classification of the object which is capable of being moved by a force from the robot acting thereon.
Abstract:
Disclosed are a path planning apparatus of a robot, which generates a path plan to control movements of the robot, and a method thereof. An improved RRT algorithm is employed, when a tree is extended in a configuration space so as to satisfy a constraint, and thus steeply bent or roundabout portions of the tree are reduced.
Abstract:
A controller of a mobile robot that moves an object such that the position of a representative point of the object and the posture of the object follow a desired position and posture trajectory is provided. The desired posture trajectory of the object includes the desired value of the angular difference about a yaw axis between a reference direction, which is a direction orthogonal to the yaw axis of the object, and the direction of the moving velocity vector of the representative point of the object, defined by the desired position trajectory. The controller has a desired angular difference setting means which variably sets the desired value of the angular difference according to at least a required condition related to a movement mode of the object. This allows the object to be moved at a posture which meets the required condition of the movement mode.
Abstract:
A moving robot and a method to build a map for the same, wherein a 3D map for an ambient environment of the moving robot may be built using a Time of Flight (TOF) camera that may acquire 3D distance information in real time. The method acquires 3D distance information of an object present in a path along which the moving robot moves, accumulates the acquired 3D distance information to construct a map of a specific level and stores the map in a database, and then hierarchically matches maps stored in the database to build a 3D map for a set space. This method may quickly and accurately build a 3D map for an ambient environment of the moving robot.
Abstract:
A routing apparatus includes a sensor unit which has capabilities to detect an object in a target field of view and measure position of the object, and an electronic control unit which controls movements of the autonomous mobile unit. An electronic control unit determines velocity and a travel direction of the object based on changes in the position of the object obtained from the sensor unit over a plurality of measurement cycles, determines a path of the autonomous mobile unit so as to avoid collision with the object based on the position, the velocity, and the travel direction of the object, and determines the path of the autonomous mobile unit by setting the velocity of the object to a value equal to or lower than a predetermined value if the object recognized in the previous measurement cycle is not recognized in the current measurement cycle.
Abstract:
A robot capable of performing appropriate movement control while reducing arithmetic processing for recognizing the shape of a floor. The robot sets a predetermined landing position of steps of the legs on a present assumed floor, which is a floor represented by floor shape information used for a current motion control of the robot, during movement of the robot. An image projection area is set, and is projected on each image captured by cameras mounted on the robot for each predetermined landing position in the vicinity of each of the predetermined landing positions. Shape parameters representing the shape of an actual floor partial area are estimated, forming an actual floor whose image is captured in each partial image area, based on the image of the partial image area generated by projecting the set image projection area on the images captured by the cameras for each partial image area.
Abstract:
To reduce a calculation time required for generating an environment map in a mobile robot. A mobile robot (100) generates a three-dimensional position data set representing an external environment using measurement information obtained from a range sensor (10). Next, based on an old environment map which is the environment map generated in the past and an amount of movement of the mobile robot (100), at least three-dimensional position data belonging to an area determined as the obstacle area in the old environment map, and three-dimensional position data belonging to an unobserved area which is not included in the old environment map are selected as plane-detection target data from among three-dimensional position data included in the three-dimensional position data set. Then, plane detection is executed using the plane-detection target data. Then, the movable area and the obstacle area which are included in the plane-detection target data are recognized using the results of the plane detection. Lastly, a new environment map is generated by integrating the movable area and obstacle area, which are recognized using the results of the plane detection, with an area determined as the movable area in the old environment map.
Abstract:
To reduce a calculation time required for generating an environment map in a mobile robot. A mobile robot (100) generates a three-dimensional position data set representing an external environment using measurement information obtained from a range sensor (10). Next, based on an old environment map which is the environment map generated in the past and an amount of movement of the mobile robot (100), at least three-dimensional position data belonging to an area determined as the obstacle area in the old environment map, and three-dimensional position data belonging to an unobserved area which is not included in the old environment map are selected as plane-detection target data from among three-dimensional position data included in the three-dimensional position data set. Then, plane detection is executed using the plane-detection target data. Then, the movable area and the obstacle area which are included in the plane-detection target data are recognized using the results of the plane detection. Lastly, a new environment map is generated by integrating the movable area and obstacle area, which are recognized using the results of the plane detection, with an area determined as the movable area in the old environment map.
Abstract:
A controller for a mobile robot 1 which carries out task of mobbing an object W so as to make a position of a representative point of the object W and a posture of the object follow a desired position trajectory and a desired posture trajectory, in a state where distal portions of arms 7, 7 is made to contact a portion Wb adjacent to one end of the object W, which variably sets the position of the representative point of the object W in an object coordinate system when the object W is observed in the yaw axis direction, at least in accordance with the change of the desired posture about the yaw axis in the desired posture trajectory. By doing so, movement of the object appropriate for the changing pattern of the desired posture of the object is carried out.