Abstract:
Disclosed is an ECG electrode lead wire connector which provides improved electrical and mechanical coupling of the ECG electrode press stud to the lead wire, provides enhanced ergonomics to the clinician, and may alleviate patient discomfort associated with the attachment and removal of ECG leads. The connector may be engaged and disengaged with little or no force imparted to the patient or the ECG pad, which significantly minimizes the risk of inadvertent dislodgement of the pad. In one embodiment the disclosed connector provides a thumb cam lever which affirmatively engages the press stud to the connector, and provides tactile feedback to the clinician that the connector is properly engaged. In other embodiments, the connector provides a pushbutton to enable the clinician to easily engage and disengage the connector from the ECG stud. The disclosed connectors may also decrease clinician fatigue, and may provide more reliable ECG results.
Abstract:
An electrical connecting element (10) comprising at least one carrier body (50) and at least one electrical contact body (20) extending on both sides (52, 54) of the carrier body (50). The at least one electrical contact body (20) is arranged on an insulating body (60), which is coupled to the carrier body (50). At least one embodiment of the invention refers to a combination comprising a connecting element (10) and a component, and to an electrical device (110) comprising a connecting element (10).
Abstract:
A percutaneous cable includes a cable body having a first end and second end, the cable body including a sheath adapted to traverse a patient's skin. The cable includes a plurality of conductors disposed within the cable body configured to transmit power and control data between a system controller and two implantable pumps. The cable includes a first connector disposed at the first end of the cable body and coupled to the plurality of conductors, the first connector configured to connect the cable body to the system controller. The cable includes a second connector disposed at the second end of the cable body, the second connector comprising a first set of contacts and a second set of contacts.
Abstract:
An implantable lead includes a lead body and at least one safety element. The lead body has a distal end and a proximal end. The lead body defines at least one lumen extending along at least a portion of the lead body. The lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
Abstract:
A lead connector is terminated proximally by a connector pin and includes a circumferential array of connector pads, each connector pad coupled to an electrode via an elongated insulated conductor. A lumen of an adaptor is adapted to engage the lead connector and includes an electrical contact zone formed therein and positioned for coupling with a one of the array of connector pads, when the connector is engaged within the lumen, in order to facilitate electrical connection of a selected electrode corresponding to the one of the array of connector pads.
Abstract:
A low-insertion force electrical connector for implantable medical devices. The electrical contact includes a housing with a pair of opposing sidewalls each with center openings oriented generally concentrically around a center axis. The housing also includes a recess with a recess diameter. An inner coil is located in the recess with a coil axis generally co-linear with the center axis of the center openings. The inner coil includes an outer diameter less than the recess diameter, and an inner diameter greater than a center opening diameter. An outer coil is threaded onto the inner coil to form a generally toroidal-shape. The outer coil has an outer diameter less than the recess diameter, and an inner diameter less than the center opening diameter. The outer coil is radially expanded within the recess in response to engagement with contact rings on the implantable medical device, such that the outer diameter of the outer coil is at least equal to the recess diameter.
Abstract:
A magnetic connector has a receptacle and a plug. The receptacle has an electromagnet comprising an inner core, an outer core, a coil disposed around the inner core and an air gap defined by the edges of the inner and outer cores. The plug has a plug core and an anchor defined by the plug core edge. The anchor is configured to insert into the air gap as a receptacle socket electrically connects with plug pins. The coil is energized and de-energized so as to assist in the insertion or removal of the anchor from within the air gap and the corresponding connection and disconnection of the socket and pins.
Abstract:
The present invention related to a connector which is used in a biosensing meter and receives an insertion, comprising a body and a plurality of terminal components. The plurality of terminals arranged all around and face to face, thereby reducing the volume of the connector. Furthermore, the plurality of terminal respectively contact the insertion equally thereby increasing the transmissible accuracy and the determination accuracy. The connector can further comprise a sliding base connected with the body for ejecting the insertion, whereby the invented connector can achieve multi-functional goal.
Abstract:
A connector assembly includes an insertion member that includes a plurality of contact pads, and a housing that defines an opening at a first end configured to receive the insertion member. The upper inside surface and lower inside surface of the housing define a plurality of slots into which are placed electrical contacts. Each electrical contact includes a cross-member, a first and a second extension member, a resilient member, and a mating extension. The first and second extension members extend from respective ends of the cross-member and are positioned within respective slots of the housing. The resilient member extends from the cross member from a position between the first and the second extension members. A mating extension extends from the other side of the cross-member and through an opening defined in the rear wall of the housing. The resilient member is configured to make electrical contact with a contact pad of the insertion member.
Abstract:
A connector and adapter engage leads with each other or with an implantable medical device when a wedge is removed from the spring-loaded connector or adapter assembly, thereby permitting the connector or adapter to compress around the lead connector. The connector and adapter assembly may include a body with at least one lumen, at least one contact exposed within the at least one lumen of the body, at least one wire electrically connected to the at least one contact, at least one clamp ring capable of compressing around the body, and at least one wedge or similar tool capable of opening and closing the at least one clamp ring.