Abstract:
The invention relates to an airbag system for aircraft, intended to protect crew and passengers. The system comprises: inflatable cushions; a supply of air from individual tanks, communal tanks and the aircraft APU; a connection to the landing gear and the altimeter; a manual switch; an approach and contact sensor enabling automatic activation; electric lines, electrovalves and air ducts. The system also includes a second version which is activated using electrochemical batteries which operate on the basis of sharp deceleration.
Abstract:
Systems for indicating the status of a seatbelt buckle prior to a protective response are disclosed herein. An airbag activation system configured in accordance with one embodiment of the disclosure includes a normally closed magnetically operated reed switch. The reed switch is attached to a connector carried on one portion of a seatbelt, and a magnet is attached to a buckle carried on another portion of the seatbelt. Coupling the connector to the buckle causes the magnetic field of the magnet to move the reed switch from the normally closed position to an open position, thereby enabling the activation system to inflate the airbag in the event of an accident.
Abstract:
An external airbag for an aircraft includes an inflatable bladder having a top portion and a bottom portion, the top portion being generally adjacent to an exterior of the aircraft. A widthwise panel divides the inflatable bladder into a first cylindrical portion and a second cylindrical portion. The widthwise panel acts to restrict outward bulging of the inflatable bladder. An aperture in the widthwise panel may be used for allowing gas communication between the first cylindrical portion and a second cylindrical portion.
Abstract:
Described are airbag modules for a passenger seat having a seat back, a container coupled to the seat back, wherein the container includes at least one airbag, and a structure positioned aft of the seat back, wherein the structure includes a recess configured to receive the at least one airbag in a deployed state. In certain examples, the container also has a cover with a breakable line, and the structure also has a breakable area positioned aft of the recess, wherein the breakable line is configured to form an opening in the cover and the breakable area is configured to form an opening in the aft surface when a force is applied by the at least one airbag in a deployed state.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
Systems for indicating the status of a seatbelt buckle prior to a protective response are disclosed herein. An airbag activation system configured in accordance with one embodiment of the disclosure includes a normally closed magnetically operated reed switch. The reed switch is attached to a connector carried on one portion of a seatbelt, and a magnet is attached to a buckle carried on another portion of the seatbelt. Coupling the connector to the buckle causes the magnetic field of the magnet to move the reed switch from the normally closed position to an open position, thereby enabling the activation system to inflate the airbag in the event of an accident.
Abstract:
Provided are an aircraft airbag that inflates across a plurality of seats, an airbag device including this airbag, and an aircraft equipped with this airbag device. The airbag has a bag main body extending across three seats and in the left-right direction of the aircraft body, and partition panels that partition the inside of the bag main body into small chambers and corresponding to the seats. Gas from the inflator flows into the small chamber in the middle, and flows into the small chambers through the communication portions above and below the partition panels. When occupants are caught and thereby the pressures in the small chambers reach a predetermined value or more, vent holes open.
Abstract:
A flexible vessel includes a restraint structure and a barrier structure. The restraint structure further includes a first portion, and a second substantially rounded end cap portion that is attached to the first portion. The restraint structure also includes an array of tendons. The barrier structure is positioned within the restraint structure. When the barrier contains a fluid, a portion of the load is carried by the restraint structure and another portion of the load is carried by the barrier structure. The flexible vessel is collapsible to occupy a first volume and distended to occupy a second volume. The flexible vessel is part of a system when used in various applications with respect to a craft.
Abstract:
An unmanned air module includes one or more rotors, engines, a transmission and avionics. Any of several different ground modules may be attached to the air module. The air module may fly with and without the ground module attached. The ground module may be a vehicle ground module and may be manned. The vehicle ground module may transport the attached air module across the ground. The air module may have two rotors, which may be ducted fans, and three different configurations: a tandem rotor configuration, a side-by-side configuration, and a tilted-rotor configuration.