Abstract:
The specification describes a universal channel dispersion compensating fiber (CDCF) for WDM channel compensation that provides essentially zero dispersion slope over the wide wavelength band used in state-of-the-art transmission systems. It allows compensation of a large number of channels using a single fiber design. The improved optical fiber of the invention exhibits a dispersion slope at 1550 nm:
Abstract:
An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
Abstract:
The specification describes an improved optical fiber design in which the criteria for high performance in a Raman amplified optical system, such as moderate effective area, moderate dispersion, low dispersion slope, and selected zero dispersion wavelength, are simultaneously optimized. In preferred embodiments of the invention, the dispersion characteristics are deliberately made selectively dependent on the core radius. This allows manufacturing variability in the dispersion properties, introduced in the core-making process, to be mitigated during subsequent processing steps.
Abstract:
The specification describes a universal channel dispersion compensating fiber (CDCF) for WDM channel compensation that provides essentially zero dispersion slope over the wide wavelength band used in state-of-the-art transmission systems. It allows compensation of a large number of channels using a single fiber design. The improved optical fiber of the invention exhibits a dispersion slope at 1550 nm:
Abstract:
A silica glass member manufacturing method of the present invention includes the steps of making a silicon compound react in oxyhydrogen flame using a burner having a multi-tubular structure to obtain fine silica glass particles, depositing the fine silica glass particles on a support rotating and placed to oppose the burner to obtain a silica glass ingot with a temperature distribution in at least one plane perpendicular to a rotational axis of the silica glass ingot, the temperature distribution being symmetrical with respect to the rotational axis and having a maximal value between a center and a peripheral portion of the plane, and obtaining a distribution of signed birefringence values on the basis of birefringence values and directions of phase advance axes measured at a plurality of points in the plane perpendicular to the rotational axis of the silica glass ingot and cutting, from the silica glass ingot, a silica glass member whose signed birefringence values monotonously increase from the center to the peripheral portion of the plane.
Abstract:
Fiber is drawn from a preform comprising a silica body, e.g., a sol-gel derived overcladding or substrate tube. Prior to sintering, the body is treated with a gaseous mixture containing one or more non-oxygenated sulfur halides, to remove and/or reduce the size of refractory oxide particles, and/or dehydroxylate the body. Removal of metal oxide particles or reduction in their size contributes to drawing of optical fiber exhibiting desirable strength, since such particles act as initiation sites for breakage. Advantageously, the halides include sulfur chlorides, which provide desirable improvements compared to treatment by oxygenated sulfur chlorides such as thionyl chloride (SOCl2).
Abstract:
Systems and methods are described for fabricating a varying-waveguide optical fiber. In one described method, a preform is fabricated having a core and at least one cladding region. The cladding region has a higher viscosity and the core region has a lower viscosity. The relative viscosities of the cladding region and core are chosen such that, when tension is applied to an optical fiber drawn from the preform, the applied tension is primarily borne by the cladding region thereby causing a viscoelastic strain to be frozen into the cladding region, while creating a minimal viscoelastic strain in the core. The method further includes drawing the preform into an optical fiber under an applied tension, such that a viscoelastic strain is frozen into the cladding region the frozen-in viscoelastic strain decreasing the cladding region refractive index. The cladding region refractive index is changed in a section of the optical fiber by heating the section so as to relax the viscoclastic strain frozen into the cladding region in the section of fiber, thereby increasing the cladding region refractive index in the section of fiber.
Abstract:
An optical fiber preform having a low core noncircularity and eccentricity for producing an optical fiber having an improved polarization mode dispersion, a method for producing the preform, and an optical fiber produced from the preform. The optical fiber preform is produced by the following steps. Diameter-reduced portions 11a and 11b are formed in the vicinity of the ends of the glass pipe 11. A glass rod 12 is inserted into the glass pipe 11. The glass rod 12 is fixed to the glass pipe 11 at the diameter-reduced portion 11a. The glass pipe 11 and the glass rod 12 are heat-unified from the diameter-reduced portion 11b forward to the diameter-reduced portion 11a. The optical fiber preform has a core noncircularity of at most 1.5%. The optical fiber has a polarization mode dispersion of at most 0.15 ps/km1/2 at a wavelength of 1,550 nm.
Abstract:
An article of relatively pure silica, and a furnace and method of producing the article. The article is produced by collecting molten silica particles in a refractory furnace in which at least a portion of the refractory has been exposed to a halogen-containing gas to react with contaminating metal ions in the refractory.
Abstract:
In the present invention, by forming a dispersion shifted optical fiber that has a refractive index profile comprising: a central core portion 1; a step core portion 2 provided at an outer periphery of the central core portion 1 and having a refractive index lower than that of the central core portion 1; and cladding 7 provided at an outer periphery of the step core portion 2 and having a refractive index lower than that of the step core portion 2, and which dispersion shifted optical fiber has, in a used wavelength band that is selected from between 1490 and 1625 nm, chromatic dispersion values of 7 to 15 ps/km/nm, an Aeff of 60 to 150 &mgr;m2, a dispersion slope of 0.09 ps/km/nm2 or less, a bending loss of 100 dB/m or less, and a cutoff wavelength that provides essentially single mode transmission, it is possible to reduce the cost of the system and to achieve n improvement in the transmission characteristics.
Abstract translation:在本发明中,通过形成具有折射率分布的色散位移光纤,包括:中心芯部分1; 设置在中心芯部1的外周并具有比中央芯部1的折射率低的折射率的台阶芯部2; 以及设置在台阶芯部2的外周并且折射率低于台阶芯部2的折射率的包层7,并且该色散位移光纤具有在从1490到1625之间的使用波长带中 nm,色散值为7〜15ps / km / nm,Aeff为60〜150mum2,色散斜率为0.09ps / km / nm2以下,弯曲损耗为100dB / m以下,截止频率为 提供基本单模传输的波长,可以降低系统的成本并实现传输特性的提高。