Abstract:
An optical wide angle sensor head for directionally sensing optical radiation is made of a plurality of individual sensor optical elements. Each sensor optical element is arranged at an input end of its own fiber optical conductor and has its own light entrance, its own field of view and its own individual optical axis. Neighboring fields of view may overlap each other. The fiber optical conductors lead to a transducer for converting the individual light signals into respective electrical signals. The individual sensor optical elements are arranged on a common mounting member in a housing so that the individual optical axes pass through a common intersection in front of said light entrances. The mounting member is a flat plate or a concave plate having a concave curvature facing in the viewing direction, whereby a spherical mounting is avoided.
Abstract:
Apparatus for detecting discontinuities in a radiation diffusing surface (10) such as paper. Radiation is passed to the surface and a radiation collector (19) receives the diffused radiation (18) from a limited area of the surface (10). The radiation collector receives the diffuse radiation from a limited area only and from within predetermined angular limits other than normal to the surface. The radiation collector (19) defines said predetermined angular limits through total internal reflection.
Abstract:
A solar radiation sensor comprises a semispherical or spherical body member formed with a plurality of radially-extending passageways leading to individual solar-radiation sensors individually oriented and shielded so as to intercept only solar radiation progressing along the radial lines towards the detectors. In one described embodiment, the detectors are recessed within the body member at the bottom of their respective bores, and in a second described embodiment the detectors are all formed in a flat face of the body member and receive the solar radiations by means of fiber optical elements disposed within the bores.
Abstract:
A photosensitive surface is enclosed behind a wall formed with a vertically open slit which forms with the surface a vertical angle of 80.degree.. This slit is open about 3.degree. and is displaced horizontally past the surface through at least 150.degree. so as to let parallel rays of sunlight fall onto this surface and suppress diffuse nonparallel ground light. The wall can be carried on a support also carrying the photosensitive surface, e.g. a photoresistor, photocell, or photodiode, which is used to control an awning, roller blinds, or the like.
Abstract:
A photosensitive surface is enclosed behind a wall formed with a vertically open slit which forms with the surface a vertical angle of 80*. This slit is open about 3* and is displaced horizontally past the surface through at least 150* so as to let parallel rays of sunlight fall onto this surface and suppress diffuse nonparallel ground light. The wall can be part of a cylindrical or frustoconical element rotated about a fixed photosensitive surface, e.g., a photoresistor, photocell, or photodiode, which is used to control an awning, roller blinds, or the like.
Abstract:
1. A light-collecting and detecting system comprising a lens having an annularly shaped toric refracting surface formed thereon in concentric relation to a central axis of said system, and in predetermined spaced relation to a preselected focal point on said axis, said lens having a second surface thereon transversely intersecting said axis substantially at said focal point, a layer of photosensitive material of relatively small size carried by said second surface adjacent said focal point, said annular refracting surface being, in all radial sections thereof, so disposed in offset relation to said axis and so spaced relative to said focal point and so convexly elliptically curved as to face outwardly in predetermined angular relation to said optical axis and simultaneously direct and concentrate substantially all of the light being received from corresponding parts of a conically shaped hollow annular object field of predetermined mean angular value and width onto said layer, whereby any material change in intensity in the light being received from any part of said annular object field will be detected by said photosensitive layer.