Abstract:
With a mobile X-ray apparatus disclosed, an operator is able to go rounds without contacting to the mobile X-ray apparatus while the mobile X-ray apparatus traveling automatically tracks the operator. Since the operator controls the mobile X-ray apparatus without contacting to the mobile X-ray apparatus, the operator is able to carry more items necessary for patient diagnosis with an operator's free hand. In addition, the mobile X-ray apparatus automatically travels while tracking the operator from behind. Accordingly, an operator's view is not obstructed, ensuring prevention of the mobile X-ray apparatus from contacting to the obstructions. Moreover, when the operator enters into a no-entry area for the mobile X-ray apparatus, it is detected that the mobile X-ray apparatus is now ready to enter into the no-entry area, and accordingly, the mobile X-ray apparatus stops its automatic tracking function. With the above configuration, the mobile X-ray apparatus allows automatic travelling while tracking the operator, and also allows automatic prevention of the mobile X-ray apparatus from entering into the no-entry area. As a result, rounds with the mobile X-ray apparatus are performable in a safer manner.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
The invention provides a control interface configured to cooperate with a vehicle, such as a wheelchair or mobile robot, said interface comprising at least one sensor is adapted to detect the presence of at least one finger of a user and to act as a switching mechanism between manual and autonomous control of the vehicle. The invention provides a highly intuitive and effective means of switching between automatic and manual vehicle control-no user training required. The control interface allows for user to be comfortable in an autonomous vehicle—users can instantly gain full control when needed.
Abstract:
Systems, devices, and methods are described for providing, among other things, a wheelchair-assist robot for assisting a wheelchair user with everyday tasks or activities at work, at home, and other locations. In an embodiment, the mobile wheelchair-assist robot includes a wheelchair interface component configured to exchange control information with a wheelchair controller. In an embodiment, a wheelchair-assist robot mount assembly is provided for, among other things, electrically and physically coupling a wheelchair-assist robot to an associated wheelchair.
Abstract:
Systems, devices, and methods are described for providing, among other things, a wheelchair-assist robot for assisting a wheelchair user with everyday tasks or activities at work, at home, and other locations. In an embodiment, the mobile wheelchair-assist robot includes a wheelchair interface component configured to exchange control information with a wheelchair controller. In an embodiment, a wheelchair-assist robot mount assembly is provided for, among other things, electrically and physically coupling a wheelchair-assist robot to an associated wheelchair.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
Systems, devices, and methods are described for moving a patient to and from various locations, care units, etc., within a care facility. For example, a transport and support vehicle includes a body structure including a plurality of rotatable members operable to frictionally interface the vehicle to a travel path and to move the vehicle along the travel path, and a surface structured and dimensioned to support an individual subject. A transport and support vehicle can include, for example, an imager operably coupled to one or more of a power source, a steering assembly, one or more of the plurality of rotatable members, etc., and having one or more modules operable to control the power source, steering assembly, one or more of the plurality of rotatable members, etc., so as to maintain an authorized operator in the image zone.
Abstract:
Systems, devices, and methods are described for providing, among other things, a wheelchair-assist robot for assisting a wheelchair user with everyday tasks or activities at work, at home, and the like. In an embodiment, the mobile wheelchair-assist robot includes a wheelchair interface component configured to exchange control information with a wheelchair controller. In an embodiment, a wheelchair-assist robot mount assembly is provided for, among other things, electrically and physically coupling a wheelchair-assist robot to an associated wheelchair.
Abstract:
Systems, devices, and methods are described for moving a patient to and from various locations, care units, etc., within a care facility. For example a transport and support vehicle includes a body structure including a plurality of rotatable members operable to frictionally interface the vehicle to a travel path and to move the vehicle along the travel path, and a surface structured and dimensioned to support an individual subject. A transport and support vehicle can include, for example, an imager operably coupled to one or more of a power source, a steering assembly, one or more of the plurality of rotatable members, etc., and having one or more modules operable to control the power source, steering assembly, one or more of the plurality of rotatable members, etc., so as to maintain an authorized operator in the image zone.
Abstract:
A self operable wheelchair includes a chair body having several wheels for moving about; a power module electrically connected to one wheel of the chair body for supplying power; a processing module electrically connected to the power module for processing one route data and converting into a control signal transmitted to the power module for controlling activation of the chair body; a memory module for storing and transmitting the route data to the processing module; a detection module capable of detecting the route data of the chair body and transmitting the route data via the processing module to store within the memory module; and an operation module for transmitting an operation signal to the processing module, which, in turn, activates the chair body based on the operation signal.