Abstract:
A method for fabrication of an hydrogen-permeable membrane, comprising forming an alloy of a target composition and structure from powders by mechanically alloying; and forming a membrane from the alloy of the target composition and structure.
Abstract:
An R-T-B rare earth sintered magnet contains R which represents a rare earth element; T which represents a transition metal essentially containing Fe; a metal element M which represents Al and/or Ga; B; Cu; and inevitable impurities the R-T-B rare earth sintered magnet including 13.4 to 17 at % of R, 4.5 to 5.5 at % of B, and 0.1 to 2.0 at % of M, and T as the balance; in which the R-T-B rare earth sintered magnet is formed of a sintered body which includes a main phase composed of R2Fe14B and a grain boundary phase including a larger amount of R than the main phase; in which the magnetization direction of the main phase is a c-axis direction, in which crystal grains of the main phase have one of an elliptical shape and an oval shape extended in such a direction so as to cross the c-axis direction; and in which the grain boundary phase includes an R-rich phase in which the total atomic concentration of the rare earth elements is 70 at % or greater and a transition metal-rich phase in which the total atomic concentration of the rare earth elements is 25 to 35 at %.
Abstract:
A method for producing a substantially spherical metal powder is described. A particulate source metal includes a primary particulate and has an average starting particle size. The particulate source metal is optionally ball milled and mixed with a binder in a solvent to form a slurry. The slurry is granulated to form substantially spherical granules, wherein each granule comprises an agglomeration of particulate source metal in the binder. The granules are debinded at a debinding temperature to remove the binder from the granules forming debinded granules. The debinded granules are at least partially sintered at a sintering temperature such that particles within each granule fuse together to form partially or fully sintered solid granules. The granules can then be optionally recovered to form a substantially spherical metal powder.
Abstract:
A method of making a polycrystalline diamond compact includes mixing a diamond particle feed with a binder to form a mixture, forming the mixture into a precompact, heating the pre-compact in a non-oxidizing atmosphere to substantially drive off the binder, oxidizing the pre-compact in an oxidizing atmosphere at a temperature and for a time sufficient to burn off non-diamond carbon without overoxidizing diamond, and sintering the pre-compact at high pressure and high temperature to form a polycrystalline diamond compact. The method may also include oxidizing the diamond particle feed prior to mixing with the binder.
Abstract:
A method of producing inorganic compound particles is provided. It includes a step of impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including them at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram and lower than the melting temperature of the inorganic compound. The first raw particles contain an element with a melting point equals to or higher than a melting point of the inorganic compound. The second raw particles contain an element with a melting point lower than the inciting point of the inorganic compound. The method also includes a step of synthesizing inorganic compound particles by a synthetic reaction in the first raw particles between the elements contained in the first and second raw particles.
Abstract:
The present invention provides a method for producing nanometer-size spherical particles. The method includes a first step for producing intermediate spherical particles. The intermediate spherical particles include a polycrystalline or single-crystalline region, having a particle size of 1 to 300 μm. The method of the present invention further includes a second step for producing final spherical particles. The second step uses a swirling plasma gas flow having the central axis thereof, the central axis running through an area between an anode and a cathode of a plasma generator. The intermediate spherical particles are discharged along the axis to subject the intermediate spherical particles to a plasma atmosphere of the area to form the final spherical particles.
Abstract:
A process for manufacturing metal containing powder, the process including the steps of: (a) mixing at least one metal oxide powder with Ca or Mg granules and/or calcium hydride in granule or powder form to form a mixture; (b) maintaining said mixture under an H2 atmosphere, at a temperature between 1000° C. and 1500° C. for 1-10 hours, followed by: (c) recovering metal containing powder. Metal hydride powder may be recovered. The process may further include between steps (b) and (c): (d) switching the H2 atmosphere to an Ar atmosphere and maintaining the mixture thereunder for a period of 20 minutes to 5 hours, followed by: (e) cooling under Ar atmosphere, wherein metal powder is recovered in step (c).
Abstract:
A porous aluminum body having high porosity and a manufacturing method therefor are provided, wherein the porous aluminum body can be manufactured by continuous manufacturing steps. In the present invention, this porous aluminum body includes a plurality of aluminum fibers connected to each other. The aluminum fibers each have a plurality of columnar protrusions formed at intervals on an outer peripheral surface of the aluminum fibers, the columnar protrusions protruding outward from the outer peripheral surface. Adjacent aluminum fibers are integrated with the aluminum fibers and the columnar protrusions.
Abstract:
The present invention discloses a manufacturing method and device of rare earth magnet alloy powder and rare earth magnet. The method comprises a process of fine grinding at least one kind of rare earth magnet alloy or at least one kind of rare earth magnet alloy coarse powder in inert jet stream with oxygen content below 1000 ppm to obtain powder with grain size smaller than 50 μm. Low oxygen content ultra fine powder with grain size smaller than 1 μm is not separated from the pulverizer, the oxygen content of the atmosphere is reduced to below 1000 ppm in the pulverizer when crushing the powder, thereby abnormal grain growth (AGG) rarely happens in the sintering process to get low oxygen content sintered magnet, it has advantages of simplifying process and reducing manufacturing cost.
Abstract:
An R-T-B rare earth sintered magnet contains R which represents a rare earth element; T which represents a transition metal essentially containing Fe; a metal element M which represents Al and/or Ga; B; Cu; and inevitable impurities the R-T-B rare earth sintered magnet including 13.4 to 17 at % of R, 4.5 to 5.5 at % of B, and 0.1 to 2.0 at % of M, and T as the balance; in which the R-T-B rare earth sintered magnet is formed of a sintered body which includes a main phase composed of R2Fe14B and a grain boundary phase including a larger amount of R than the main phase; in which the magnetization direction of the main phase is a c-axis direction, in which crystal grains of the main phase have one of an elliptical shape and an oval shape extended in such a direction so as to cross the c-axis direction; and in which the grain boundary phase includes an R-rich phase in which the total atomic concentration of the rare earth elements is 70 at % or greater and a transition metal-rich phase in which the total atomic concentration of the rare earth elements is 25 to 35 at %.