Abstract:
The invention relates to a vertical take-off and landing gyropendular craft or drone device (FIG. 18) able to move around in the following different physical environments: in the air, on land, at sea, underwater or in outer space, comprising upper and lower propulsion units, equipped with an annular fairing accommodating a certain number of electronically slaved wing or gas-powered drive or propulsion units situated in the continuation of the axis of this device, mounted on 3-D ball-joints at the ends of a certain number of telescopic rods, for example set at 120° apart at the periphery of the platform and orientable about the three axis according to the plane of flight of the multimodal multi-environment craft, a vertebral structure by way of a 3-D articulated central body of solid or hollow cylindrical shape for forming a stabilized function of stabilizing, maintaining the position and heading, and of an inertial rotary disc platform equipped underneath with a cabin of hemispherical shape extending from the vertebral structure, accommodating a payload or a useful application, designed for various fields of application i.e. the sector of defence or civil security, so as to perform functions of search and rescue, exploration, navigation, transport, surveillance and telecommunications infrastructure deployment in free space.
Abstract:
A ducted fan core for an unmanned aerial vehicle is provided that accommodates a wide variety of payloads. The ducted fan core comprises a frame, attached to which are an engine, gearbox assembly, fan, and a plurality of control vanes. A first surface on the frame comprises a plurality of connects or electrical traces. The plurality of connects are used to removably attach a variety of pods carrying various payloads. Thus, a wide variety of payloads may be delivered using the same unmanned aerial vehicle, simply by removing and attaching different pods to a fixed vehicle core. These pods may be shaped so as to form part of the vehicle exterior, and when the pods are attached to the frame, they enhance the aerodynamics of the vehicle.
Abstract:
A launch and capture system for capturing a vertical take-off and landing (VTOL) vehicle having a thruster and a duct configured to direct airflow generated by the thruster includes a capture plate and an extension. The capture plate is configured to alter the airflow and generate a force attracting the duct to the capture plate. The extension is coupled to the capture plate, and is configured to at least facilitate holding the VTOL vehicle against the capture plate.
Abstract:
A rotorcraft having two coaxial, counter-rotating rotors, one proximate to the forward end of the fuselage and one proximate to the aft end of the fuselage, that generate the forces necessary to lift the craft and maneuver it in the air by adjusting the pitch of the rotor blades throughout their rotation, and a method of flying a dual rotor rotorcraft involving taking off in a vertical orientation, climbing vertically, transitioning to generally horizontal flight, flying horizontally, and subsequently repeating the sequence in reverse to land again in a vertical orientation.
Abstract:
Conventional bottom blade type trefoil flight vehicles have composite structures wherein a plurality of pairs of fixing plates, forward/backward adjustment blades, and left and right rotation adjustment blades are separately mounted and adjusted, and thus have difficulties in scouting and surveillance in an indoor area due to the heavy weights and the large volumes of the flight vehicles. Another conventional flight vehicle has drawbacks in that flight in the left and right directions is difficult, and an adjustment blade and a fixing plate are arranged adjacent to each other to cause mutual influences of wind and non-uniformity in the flow of wind. The present invention provides a flight vehicle characterized in that three pairs of fixing plates with fixed pitch propellers and adjustment blades are installed at an angle of 120 degrees. The present invention allows anti-torque, hovering, forward/backward advancing, left and right rotation, and flight in the left and right direction of flight vehicles, and scouting and surveillance in a narrow space. The flight vehicle of the present invention is simple in structure and control, lightweight, and small in size, thereby improving power efficiency.
Abstract:
An unmanned aerial vehicle (UAV) in the form of a “tail sitter” flying wing adapted for vertical take off and landing and transitions between flight as a helicopter and wing-borne flight. The vehicle is electrically powered from onboard batteries and equipped with rotors on miniature helicopter rotor heads at the tips of the wing for both lift, during take off and landing, and forward thrust. In planform the wing comprises, to each side of its longitudinal axis, an inner section with swept back leading and trailing edges, and an outer section with a leading edge more perpendicular to the longitudinal axis, being only mildly swept back or substantially unswept, and a swept forward trailing edge.
Abstract:
An apparatus that provides shock absorption and ejection for a payload that is to be deployed from a launch capsule is disclosed. The payload ejection mechanism comprises a movable housing that houses a resilient member and a shock-damping system. The rapid acceleration of the capsule upon launch causes the movable housing to move, which compresses the resilient member, thereby storing energy. Movement of the housing also provides shock damping behavior. A locking mechanism maintains the compression of the resilient member until the capsule opens to deploy the payload. As the capsule opens, a restraint decouples from the locking mechanism and permits the resilient member to expand. Expansion of the resilient member causes the movable housing to move, thereby propelling the payload away from the capsule.
Abstract:
A Micro Air-Vehicle (MAV) starting system that provides the combined functions of: packing protection of sensitive vehicle components, a mechanical starting assembly, and a launch pad. The preferred embodiment comprises a container and a container lid with the MAV clamped to the lid. Also disposed on the container lid is a starting assembly. The lid which doubles as a launching pad with the attached MAV is removed from the container, placed on the ground, the MAV is started with the starting mechanism and launched. The arrangement minimizes the physical risk to the operator, minimizes weight of the total MAV system, consumes minimum space in the operators transport system, and eliminates dependence on supply lines for battery replacement or charging.
Abstract:
This disclosure involves aerial robots that dispenses conductive filament or systems, methods, and software for support such aerial robots. One remotely powered aerial robot system includes an aerial robot and a power source. The aerial robot comprises a body, a first propeller coupled to the body and operable to provide thrust to the aerial robot, a rotatable spool coupled to the body, and a conductive filament that is dispensed from the spool by rotation of the spool is one direction and retrieved by rotation of the spool in another direction. The power source is coupled with, and remote from, the aerial robot via the conductive filament, where the conductive filament is operable to power the first propeller using power from the power source.
Abstract:
A vertical/short take-off and landing aircraft with a single proprotor assembly that has a pair of inline counter-rotating rotors. Two inline counter-rotating engines are directly connected to the rotors. One engine is shut down in horizontal flight to improve efficiency. Gimbal mounting the proprotor assembly permits thrust to be directed forward to back and left to right to control pitch and roll when hovering. Varying the relative engine speeds controls yaw. The aircraft is adaptable as an unmanned vehicle.