Abstract:
The invention relates to a method for preparing vinyl chloride graft copolymers by emulsion polymerization and to a method for preparing blends of such graft copolymers. The invention also relates to transparent molded articles prepared by using the graft copolymers according to the invention and their blends, respectively.
Abstract:
To provide a laminated product of a layer including a polyvinyl acetal and a layer including a hydrocarbon-based polymer, having excellent adhesion between the layers.A composition including, with respect to 100 parts by mass of a polyvinyl acetal satisfying definition 1 and/or definition 2, 30 to 70 parts by mass of a plasticizer including 0.5 to 100% by mass of a plasticizer containing a polar group and 0 to 99.5% of a plasticizer containing no polar group.Definition 1: When 1 g of a polyvinyl acetal is dissolved in 100 g of methanol, an undissolved content is 2.5 to 90% by mass.Definition 2: When 1 g of a polyvinyl acetal is dissolved in 100 g of chloroform, an undissolved content is 5 to 70% by mass.
Abstract:
Disclosed herein are polyester compositions comprising the reaction product of: a) a precursor component comprising xanthene dicarboxylic acid (XDA), or a reactive derivative thereof; b) a terephthalate component comprising at least one di(C1-C3 alkyl) terephthalate, or terephthalic acid, or a combination thereof; c) a diol component comprising 1,4-cyclohexane dimethanol (CHDM); and d) at least one metal catalyst; methods of making same, and articles comprising the disclosed compositions. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
An aromatic polycarbonate resin composition is obtained by removing a solvent from a resin solution that is obtained by dissolving an aromatic polycarbonate resin-A that has a viscosity-average molecular weight of 3,000-25,000 and an aromatic polycarbonate resin-B that has a viscosity-average molecular weight of 50,000-90,000 into the solvent. The aromatic polycarbonate resin-A is contained in an amount of 99-50% by mass and the aromatic polycarbonate resin-B is contained in an amount of 1-50% by mass relative to the total mass of the aromatic polycarbonate resin-A and the aromatic polycarbonate resin-B; a plate-like molded article having thickness of 3.0 mm and molded from the aromatic polycarbonate resin composition has a haze value of 2% or less; and the number of unmelted polycarbonate pieces having a length of 100 μm or more and present within a region of 5 cm×3 cm in the plate-like molded article is 10 or less.
Abstract:
The invention relates to impact-modified, thermoplastic compositions, where the measured refractive index difference between the impact modifier particles and the matrix composition is greater than 0.008 units, yet a blend of the impact modifier particles in the matrix produces a transparent composition. The impact modifier particles are preferably impact modifier composite particles, being intimately blended with one or more polymeric process aids or dispersing aids. The polymeric process aids are physically or chemically attached to the impact modifier particles, forming composite particles that allow for facile powder isolation. The impact modifier composite particles provide improved physical, chemical, and/or rheological properties to the thermoplastic composition. Preferably the impact modifier particles of the invention are core-shell impact modifiers.
Abstract:
The present invention relates to compositions comprising at least one thermoplastic polyurethane and at least one poly(meth)acrylate, where the at least one thermoplastic polyurethane is a polyurethane based on hexamethylene 1,6-diisocyanate (HDI), on at least one diol, and on at least one chain extender, selected from the group consisting of ethylene 1,2-glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-dimethanolcyclohexane, and neopentyl glycol. The present invention further relates to moldings comprising the compositions of the invention, and also to the use of the compositions of the invention for producing a foil and for coating a molding.
Abstract:
The present disclosure relates to dyed polyester films whose color remains stable after prolonged exposure to UV radiation and to methods of making such dyed polyester films.
Abstract:
A composition of an encapsulation film for a solar cell module comprises 80˜99 weight percent of transparent resin, 0.5˜10 weight percent of granular polymer particles and 0.1˜5 weight percent of additives, wherein light refraction is controlled by a diffusion mechanism of the granular polymer particles, so that the probability of light incidence on the solar cell is increased and thus the photoelectric conversion efficiency of the solar cell is improved.
Abstract:
A vacuum thermoforming process for producing a transparent molding free from optical defects, whereby the prior temperature of the mold and preform is controlled, the preform is premolded, the mold is shaped under sub-atmospheric pressure, the mold shape is cooled, and the transparent molding is removed. The transparent plastic molding is produced from polymethyl methacrylate (PMMA) or polycarbonate (PC) with particularly good optical quality and with relatively low cycle times. Upon removal, these moldings are dimensionally stable, free from distortion, and exhibit no surface defects such as pimples.
Abstract:
A method for manufacturing a polycarbonate composition having improved transparency can comprise reacting an aromatic dihydroxy compound and a diaryl carbonate under melt polymerization conditions to provide a polycarbonate; and contacting the polycarbonate with a polydiorgano siloxane having a kinematic viscosity of less than 20 mm2/sec at 25° C. as determined in accordance with ASTM D445, and an optional additive thereby making the polycarbonate composition. The polycarbonate composition has haze less than 1% as determined in accordance with ASTM D1003-07, and can be used for optical applications such as automotive headlamps.