Abstract:
A display device, having relatively high side visibility and transmittance, includes a first substrate having a plurality of red, green, and blue pixel regions; a lower electrode disposed on the red, green, and blue pixel regions; and an upper electrode disposed on the red, green, and blue pixel regions. The upper electrode is insulated from the lower electrode, and includes a plurality of upper branch electrodes disposed on the lower electrode. A width and height of the upper branch electrode in at least one of the red, green, and blue pixel regions are respectively different from a width and a height of the upper branch electrode in another of the red, green and blue pixel regions.
Abstract:
Processes are provided for depositing multiple color filter materials on a substrate to form color filters. In a first process, the surface characteristic of a substrate is modified by radiation so that a flowable form of a first color filter material will be deposited on a first area, and converted to a non-flowable form. A second color filter material can then be deposited on a second area of the substrate. In a second process, first and second color filter materials are deposited on separate donor sheets and transferred by radiation to separate areas of the substrate. A third process uses flexographic printing to transfer the first and second color filter materials to the substrate.
Abstract:
Array cameras, and array camera modules incorporating independently aligned lens stacks are disclosed. Processes for manufacturing array camera modules including independently aligned lens stacks can include: forming at least one hole in at least one carrier; mounting the at least one carrier relative to at least one sensor so that light passing through the at least one hole in the at least one carrier is incident on a plurality of focal planes formed by arrays of pixels on the at least one sensor; and independently mounting a plurality of lens barrels to the at least one carrier, so that a lens stack in each lens barrel directs light through the at least one hole in the at least one carrier and focuses the light onto one of the plurality of focal planes.
Abstract:
Provided is a color filter array panel. The color filter array panel according to exemplary embodiments of the present invention includes: a substrate; a color filter disposed on the substrate and including a colorant including at least one of a pigment and a dye, and a solid fluorescent material; and a light source unit supplying light to the color filter, in which the solid fluorescent material is an aggregation induced emission enhancement (AIEE) material of which a liquid state is solidified to increase fluorescence efficiency.
Abstract:
The invention relates to a display, in particular an autostereoscopic or holographic display, for representing preferably three-dimensional information, wherein the stereo views or the reconstructions of the holographically encoded objects can be tracked to the movements of the associated eyes of one or more observers in a finely stepped manner within a plurality of zones of the movement region. In this case, the zones are selected by the activation of switchable polarization gratings.
Abstract:
A color separation element array includes a plurality of color separation elements arranged in two dimensions and separating an incident light according to a wavelength such that, of the incident light, a light of a first wavelength is directed to a first direction and a light of a second wavelength that is different from the first wavelength is directed to a second direction that is different from the first direction, in which each of the plurality of color separation elements includes a first element and a second element that are sequentially arranged according to a traveling direction of the incident light, and the first element and the second element of at least one of the plurality of color separation elements are shifted with respect to each other.
Abstract:
A method of manufacturing a color filter substrate includes: forming a plurality of first members, a plurality of second members and a plurality of third members, where each of the first members, the second members and the third members has a pillar shape extending in a direction; stacking the first members, the second members and the third members on one another; forming a preform by inserting the stacked first members, second members, and third members into a cane; forming a stick member from the preform via a drawing process by applying heat to the preform inserted into the cane; and slicing the stick member.
Abstract:
A device substrate and a fabricating method thereof are provided. The device substrate includes a substrate and a patterned light-shielding layer. The patterned light-shielding layer having a plurality of pixel openings and a plurality of first exposure openings is disposed on the substrate, and an area and/or shape of one of the first exposure openings is different from an area and/or shape of one of the pixel openings.
Abstract:
A color filter substrate, a display panel and a display device are provided. The color filter substrate includes a substrate and a color filter layer provided on the substrate. The color filter layer includes a plurality of pixel units in a matrix form, each of the pixel units includes at least three subpixels in different colors, and each of the subpixels includes a sub-subpixel in one color. Within each of the pixel units, areas of the sub-subpixels are inversely proportional to wavelengths that the sub-subpixels correspond to.
Abstract:
A color filter array substrate is disclosed. The color filter array substrate includes a glass substrate, a first metal layer, an insulating layer, an active layer, an ohmic contact layer, a second metal layer, a first passivation layer, a color filter layer, a second passivation layer, and a pixel electrode layer. In the color filter layer, channels are formed at locations where color resists overlap, a common electrode line is disposed on the first metal layer corresponding to the channels and a metal line is disposed on the second metal layer corresponding to the channels. The present invention can effectively shield light leakage, and can also increase liquidity of the PI and LCD.